-
摘要:
为适应无人自主空战条件下对空空导弹火控解算的特殊需求,提出了基于目标机动预估的空空导弹可发射区问题。首先,基于导弹-目标追逃对抗策略,设计了目标机动预估模型,根据导弹与目标的相对方位信息,实现对目标逃逸机动方式的预估;然后,基于多种实际约束,构建了导弹运动动力学模型;最后,设计了基于黄金分割搜索算法的可发射区边界求解策略,实现对可发射区边界值的快速精确搜索。仿真结果表明,空空导弹对初始位置位于所提出的基于目标机动预估的可发射区内的目标,具有更大的命中概率;该可发射区更加适应近距空战中目标逃逸机动的剧烈态势变化,有利于导弹战术使用性能的充分发挥。
Abstract:In order to satisfy the special requirement for fire control of air-to-air missiles under unmanned air combat conditions, the problem of launchable area of air-to-air missile based on target maneuver estimation is presented. Based on the missile-target tracking escape countermeasure strategy, the target maneuver estimation model is designed. According to the relative position information of the missile and the target, the estimation of the target escape maneuver mode is realized. Based on a variety of practical constraints, a missile dynamics model is constructed. A launchable area boundary solving strategy based on the golden section search strategy is designed to achieve a fast and accurate search for the boundary value of the launchable area. The simulation results show that the air-to-air missile has a greater probability of hitting the target in the launchable area based on the target maneuver estimation proposed in the paper. The presented launchable area is more suitable for the dramatic change of the target escape maneuver in the close air combat, which is beneficial to the full play of the missile tactical performance.
-
表 1 不同运动状态下的导弹可发射距离解算结果
Table 1. Missile launchable interval calculation results under different motion conditions
状态序号 相对状态信息 可发射距离/m aasp_y/(°) aasp_z/(°) aoff_y/(°) aoff_z/(°) γm/(°) 目标保持定常状态 目标执行预估机动 1 0 0 0 0 0 (363.56, 3 054.98) (266.35, 1 499.18) 2 20 15 90 5 10 (890.56, 4 243.23) (1 156.25, 4 141.01) 3 0 0 180 0 0 (1 332.15, 14 712.11) (1 701.59, 5 597.35) 4 0 0 90 0 0 (655.19, 5 564.34) (868.69, 4 573.34) 5 15 5 0 15 -15 (370.84, 3 065.56) (268.04, 2 168.81) 6 25 -5 45 15 8 (320.03, 3 184.17) (261.37, 854.27) 7 12.5 8 56 28 0 (369.03, 3 513.09) (398.98, 2 555.84) 8 -12.5 -20 -56 0 0 (418.72, 3 472.94) (370.15, 956.56) 9 30 0 180 0 0 (1 739.16, 10 879.83) (2 348.19, 5 320.31) 表 2 导弹模拟打靶测试结果
Table 2. Results of simulated missile target test
发射区类型 初始状态 可发射距离解算值/m 距离测试值/m 命中次数 命中率/% 整体命中率/% 本文提出的可发射区 状态3 (1 701.59, 5 597.35) 5 486.37 7 92 89.6 1 534.25 10 2 640.83 9 4 329.25 10 2 523.81 10 状态5 (268.04, 2 168.81) 1 051.03 10 82 923.53 7 771.78 10 1 870.68 6 1 568.86 8 ⋮ 目标保持定常状态下的可发射区 状态3 (1 332.15, 14 712.11) 13 321.53 1 20 37.6 6 482.26 4 8 390.38 2 12 357.48 0 9 346.35 3 状态5 (370.84, 3 065.56) 2 247.08 4 34 2 804.65 4 2 958.01 2 3 043.79 2 2 478.651 5 ⋮ -
[1] BRAIN M B.Air-to-air missile maximum launch range modeling using a multilayer perceptron: AIAA-2012-4942[R].Reston: AIAA, 2012. [2] 李枭扬, 周德云, 冯琦, 等.基于遗传规划的空空导弹发射区拟合[J].弹箭与制导学报, 2015, 35(3):16-18.LI X Y, ZHOU D Y, FENG Q, et al. Air-to-air missile launch envelops fitting based on genetic programming[J].Journal of Projectiles, Rockets, Missiles and Guidance, 2015, 35(3):16-18(in Chinese). [3] 刁兴华, 方洋旺, 伍友利, 等.双机编队空空导弹协同发射区模拟仿真分析[J].北京航空航天大学学报, 2014, 40(3):370-376.DIAO X H, FANG Y W, WU Y L, et al.Simulation analysis on air-to-air missile allowable launch envelope about cooperative air combat of multi-fighter formation[J].Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(3):370-376(in Chinese). [4] MENG G L, PAN H B, LIANG X, et al.Allowable missile launch zone calculation for multi-fighter coordination attack under network targeting environment[C]//201628th Chinese Control And Decision Conference(CCDC).Piscataway, NJ: IEEE Press, 2016: 2143-2146. [5] 吴胜亮, 南英.空空导弹射后动态可发射区计算[J].弹箭与制导学报, 2013, 33(5):49-54. doi: 10.3969/j.issn.1673-9728.2013.05.012WU S L, NAN Y.The calculation of dynamical allowable lunch envelope of air-to-air missile after being launched[J].Journal of Projectiles, Rockets, Missile and Guidance, 2013, 33(5):49-54(in Chinese). doi: 10.3969/j.issn.1673-9728.2013.05.012 [6] HUI Y L, NAN Y, CHEN S D, et al.Dynamic allowable lunch envelope of air-to-air missile after being launched in random wind field[J].Chinese Journal of Aeronautics, 2015, 28(5):1519-1528. doi: 10.1016/j.cja.2015.08.013 [7] WILLIAMS P.Three-dimensional aircraft terrain-following via real-time optimal control[J].Journal of Guidance, Control, and Dynamics, 2007, 30(4):1201-1206. doi: 10.2514/1.29145 [8] AUSTIN F, CARBONE G, HINZ H, et al.Game theory for automated maneuvering during air-to-air combat[J].Journal of Guidance, Control, and Dynamics, 1990, 13(6):1143-1149. doi: 10.2514/3.20590 [9] SUN T Y, TSAI S J, LEE Y N, et al.The study on intelligent advanced fighter air combat decision support system[C]//2006 IEEE International Conference on Information Reuse & Integration.Piscataway: IEEE Press, 2006: 39-44. [10] HUANG C Q, DONG K S, HUANG H Q, et al.Autonomous air combat maneuver decision using Bayesian inference and moving horizon optimization[J].Journal of Systems Engineering and Electronics, 2018, 29(1):86-97. [11] 国海峰, 侯满义, 张庆杰, 等.基于统计学原理的无人作战飞机鲁棒机动决策[J].兵工学报, 2017, 38(1):160-167. doi: 10.3969/j.issn.1000-1093.2017.01.021GUO H F, HOU M Y, ZHANG Q J, et al.UCAV robust maneuver decision based on statistics principle[J].Acta Armamentarii, 2017, 38(1):160-167(in Chinese). doi: 10.3969/j.issn.1000-1093.2017.01.021 [12] 黄长强, 丁达理, 黄汉桥, 等.无人作战飞机自主攻击技术[M].北京:国防工业出版社, 2014:21-22.HUANG C Q, DING D L, HUANG H Q, et al.Autonomous attack technology for UCAV[M].Beijing:National Defense Industry Press, 2014:21-22(in Chinese). [13] 黄家成, 张迎春, 罗继勋.空空导弹发射区的快速模拟法求解[J].弹箭与制导学报, 2003, 23(4):132-134.HUANG J C, ZHANG Y C, LUO J X.Fast simulation of air-to-air missile lunch area[J].Journal of Projectiles, Rockets, Missile and Guidance, 2003, 23(4):132-134(in Chinese). [14] VIEIRA D A G, TAKAHASHI R H C, SALDANHA R R.Multicriteria optimization with a multiobjective golden section line search[J].Mathematical Programming, 2012, 131(1-2):131-161. doi: 10.1007/s10107-010-0347-9 [15] 张平, 方洋旺, 金冲, 等.空空导弹发射区实时解算的新方法[J].弹道学报, 2010, 22(4):11-14. http://www.cnki.com.cn/Article/CJFDTotal-DDXB201004004.htmZHANG P, FANG Y W, JIN C, et al.A new method of real-time calculation about air-to-air missile launch envelopes[J].Journal of Ballistics, 2010, 22(4):11-14(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-DDXB201004004.htm [16] JOSEPH W H.Air-to-air missile engagement analysis using the USAF trajectory analysis program(TRAP)[C]//AIAA Flight Simulation Technologies Conference.Reston: AIAA, 1996: 148-158. 期刊类型引用(17)
1. 王金硕,何冉,刘海平. 高超滑翔飞行器对地侦察轨迹的分段优化策略. 战术导弹技术. 2025(01): 113-125+135 . 百度学术
2. 汪馨茹,苏子康,荆献勇,曾靖轩,黄宇. 基于未知坡度倾斜跑道地形融合的无人机定点着陆轨迹优化. 战术导弹技术. 2024(06): 94-106 . 百度学术
3. 熊文祥,陈倩,汪守利,杨贵玉,杨钊. 基于二阶锥规划的飞行器滑翔段轨迹优化. 导航与控制. 2024(Z1): 129-136 . 百度学术
4. 徐慧,蔡光斌,崔亚龙,侯明哲,姚二亮. 高超声速滑翔飞行器再入轨迹优化. 哈尔滨工业大学学报. 2023(04): 44-55 . 百度学术
5. 邵雷,李明杰,赵锦. 基于局部模型的再入滑翔类飞行器轨迹在线调整算法设计. 空军工程大学学报. 2023(03): 64-72 . 百度学术
6. 王帅,杨冬,陈贵亮,唐润智. 基于自适应radau伪谱法的机械手轨迹规划方法研究. 制造业自动化. 2022(03): 103-108+117 . 百度学术
7. 周池军,邵雷,骆长鑫,李明杰,雷虎民. 高动态目标拦截弹制导与控制前沿技术展望. 空天技术. 2022(02): 61-74 . 百度学术
8. 吕名添,周祥,张洪波. 基于解析初值的滑翔飞行器轨迹快速规划方法. 宇航总体技术. 2022(04): 35-40 . 百度学术
9. 张伟,陈国明,黄威,薛辉辉. 空投变掠翼滑翔炸弹轨迹优化. 飞行力学. 2022(06): 39-43 . 百度学术
10. 宋少倩,陈永信,任鹏飞,周文勇,李伟喆. 面向航程能力的固体火箭发动机方案设计优化. 哈尔滨工业大学学报. 2022(12): 27-37 . 百度学术
11. 王培臣,张睿轩,闫循良. 不确定条件下高超声速俯冲弹道鲁棒优化. 飞控与探测. 2022(06): 61-68 . 百度学术
12. 刘平,刘航,仇国庆,刘兴高. 热率约束下高超声速飞行器Gauss时间网格参数化轨迹规划. 控制理论与应用. 2022(12): 2283-2292 . 百度学术
13. 贾高伟,王建峰. 无人机集群任务规划方法研究综述. 系统工程与电子技术. 2021(01): 99-111 . 百度学术
14. 颜楚雄,王蕴宝,秦绪国,童轶男,宋加洪. 最小动压约束下的全程轨迹优化设计方法. 导弹与航天运载技术. 2021(01): 86-90 . 百度学术
15. 任鹏飞,王洪波,周国峰,王亮,蔡强,韩英宏,余家泉,袁亚. 临近空间固体动力飞行器发动机与轨迹一体化设计优化. 推进技术. 2021(09): 1936-1947 . 百度学术
16. 陈永信. 滑翔飞行器气动外形与轨迹一体化设计优化. 空天防御. 2021(03): 76-84 . 百度学术
17. 崔乃刚,郭冬子,李坤原,韦常柱. 飞行器轨迹优化数值解法综述. 战术导弹技术. 2020(05): 37-51+75+5 . 百度学术
其他类型引用(14)
-