-
摘要:
为了实现高效的抗故障注入攻击,提出了一种混合粒度奇偶校验故障注入检测方法。传统奇偶校验检测方法为每
n 比特设置一个奇偶位,表示该n 比特的奇偶性。随着n 的减小,奇偶位个数增加,资源消耗增加,检测率提高。为了实现故障检测率和资源消耗的折中,对电路故障注入敏感部分或关键部分处理的数据采用细粒度奇偶校验(即n 值较小),对其他部分采用粗粒度奇偶校验。以RC5加密算法为例,阐述了混合粒度奇偶校验故障检测方法的原理和应用,并对不同粒度奇偶校验方法的故障检测率及资源使用进行了理论分析。实验结果表明,与整个RC5电路都采用字(n =32 bit)奇偶校验相比,混合粒度奇偶校验故障注入检测方法可以提高故障检测率29.44%,仅增加资源消耗2.48%。-
关键词:
- 奇偶校验 /
- 混合粒度故障检测 /
- 故障检测率 /
- 故障注入攻击 /
- 现场可编程门阵列(FPGA)
Abstract:For efficient countermeasure against fault injection attacks, a mixed-grain parity-code-based fault detection approach was proposed. Traditional parity-code-based fault detection approach assigns a parity bit per
n bits, representing the parity of then -bit word. Asn decreases, the number of parity bits increases, leading to increased resource usage and fault detection rate. To achieve tradeoff between fault coverage and resource usage, the fine-grain parity code (smalln ) was applied to the data processed in the fault-sensitive parts or critical parts of circuits, and the coarse-grain parity code was applied to other parts of circuits. The approach was applied to RC5 encryption algorithm to explain the principle and application of the mixed-grain parity-code-based fault detection technology, and to theoretically analyze the fault coverage and resource usage of different grain solutions. The experimental results show that, compared to the RC5 circuit with one parity bit per 32 bit, the mixed-grain parity-code-based detection approach improves the fault coverage by 29.44% and increases resource usage slightly by 2.48%. -
表 1 不同粒度校验方法故障检测率理论值
Table 1. Fault coverage in theory of multi-granularity detection methods
不同比特奇偶校验/bit 故障检测率/% 32 50 16 75 8 93.75 4 99.60 表 2 不同粒度校验方法寄存器消耗理论值
Table 2. Register utilization in theory of multi-granularity detection methods
不同比特奇偶校验/bit 寄存器数量 预测电路 比较电路 32 8 1 16 16 2 8 32 4 4 64 8 表 3 不同粒度校验方法故障检测率实际值
Table 3. Fault coverage in practice of multi-granularity detection methods
不同比特奇偶校验/bit 故障检测率/% 32 51.92 16 73.97 8 89.24 4 96.28 -
[1] BARENGHI A, BREVEGLIERI L, KOREN I, et al.Fault injection attacks on cryptographic devices:Theory, practice, and countermeasures[J].Proceedings of the IEEE, 2012, 100(11):3056-3076. doi: 10.1109/JPROC.2012.2188769 [2] LIU Y N, ZHANG J, WEI L X, et al.DERA: Yet another differential fault attack on cryptographic devices based on error rate analysis[C]//52nd ACM/EDAC/IEEE Design Automation Conference.Piscataway, NJ: IEEE Press, 2015. [3] DUTERTRE J M, FOURNIER J J A, MIRBAHA A P, et al.Review of fault injection mechanisms and consequences on countermeasures design[C]//International Conference on Design & Technology of Integrated Systems in Nanoscale Era. Piscataway, NJ: IEEE Press, 2011: 5941421. [4] CHU J, BENAISSA M.Error detecting AES using polynomial residue number systems[J].Microprocessors & Microsystems, 2013, 37(2):228-234. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0229919991/ [5] SONDON S, MANDOLESI P, JULIAN P, et al.Heavy-ion micro-beam use for transient fault injection in VLSI circuits[C]//International Conference on Plasma Sciences. Piscataway, NJ: IEEE Press, 2014: 7012614. [6] KOOLI M, NATALE G D.A survey on simulation-based fault injection tools for complex systems[C]//IEEE International Conference on Design & Technology of Integrated Systems in Nanoscale Era. Piscataway, NJ: IEEE Press, 2014: 6850649. [7] BENEVENUTI F, KASTENSMIDT F L.Evaluation of fault attack detection on SRAM-based FPGAs[C]//Test Symposium. Piscataway, NJ: IEEE Press, 2017: 7906747. [8] MESTIRI H, BENHADJYOUSSEF N, MACHHOUT M, et al.A robust fault detection scheme for the advanced encryption standard[J].International Journal of Computer Network & Information Security, 2013, 5(6):49-55. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_0af74b6851168d87ca2f53435704f022 [9] TOMASHEVICH V, SRINIVASAN S, FOERG F, et al.Cross-level protection of circuits against faults and malicious attacks[C]//International on-Line Testing Symposium. Piscataway, NJ: IEEE Press, 2012: 150-155. [10] MOZAFFARI-KERMANI M, REYHANI-MASOLEH A. Concurrent structure-independent fault detection schemes for the advanced encryption standard[J].IEEE Transactions on Computers, 2010, 59(5):608-622. doi: 10.1109/TC.2010.33 [11] BERTONI G, BREVEGLIERI L, KOREN I, et al.Concurrent fault detection in a hardware implementation of the RC5 encryption algorithm[J].Application-Specific Systems, Architectures, and Processors, 2003, 16(3):423-432. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC026508925 [12] BEDOUI M, MESTIRI H, BOUALLEGUE B, et al.A reliable fault detection scheme for the AES hardware implementation[C]//International Symposium on Signal, Image, Video and Communications. Piscataway, NJ: IEEE Press, 2017: 47-52. [13] WEN L, JIANG W, JIANG K, et al.Detecting fault injection attacks on embedded real-time applications: A system-level perspective[C]//2015 IEEE 17th International Conference on High Performance Computing and Communications, 2015 IEEE 7th International Symposium on Cyberspace Safety and Security, and 2015 IEEE 12th International Conference on Embedded Software and Systems. Piscataway, NJ: IEEE Press, 2015: 700-705. [14] GILL H S.Selection of parameter 'r' in RC5 algorithm on the basis of prime number[C]//Engineering and Computational Sciences. Piscataway, NJ: IEEE Press, 2014: 6799519. [15] RIVEST R L.The RC5 encryption algorithm[C]//International Workshop on Fast Software Encryption. Berlin: Springer-Verlag, 1995: 86-96. [16] BEVI A R, SHESHU S S V, MALARVIZHI S.FPGA based pipelined architecture for RC5 encryption[C]//Second International Conference on Digital Information and Communication Technology and It's Applications. Piscataway, NJ: IEEE Press, 2012: 214-219.