Sum frequency nonlinear effects of micro-crack orientation and ultrasound in metallic materials
-
摘要:
针对非线性超声无损检测金属材料微裂纹取向角度的问题,开展了微裂纹取向与超声波的和频非线性效应研究,建立了超声和频非线性特征系数与微裂纹取向角度的关系模型。理论和有限元仿真实验结果表明,随着微裂纹取向角度的逐渐增大,超声和频非线性特征系数与微裂纹取向角度之间呈现明显的正相关趋势,而且相比二次非线性特征系数,和频非线性特征系数对微裂纹取向检测更为敏感。同时,从超声波平均能流密度(即声强)的角度出发,计算可知和频分量声强会随着微裂纹取向角度的增大而增大,而二次谐波声强基本不会发生变化,同时和频分量声强占比相比于二次谐波声强占比也得到了明显提高。超声波声强计算结果与仿真计算结果趋势基本一致,证明了理论模型的正确性。通过实验验证了模型的有效性,为金属材料微裂纹取向的检测提供了一种有效的手段。
Abstract:In order to study the non-destructive testing of micro-crack orientation angle of metal materials, the research of the ultrasonic sum frequency nonlinear effect about the micro-crack orientation of metallic materials is carried out. In theory, the relationship between the ultrasonic nonlinear frequency characteristic coefficient and the orientation angle of micro-crack is established. Then, the results of finite element simulation and calculation show that with the gradual increase of the orientation angle of the micro-cracks, there is a clear positive correlation trend between the ultrasonic nonlinear frequency characteristic coefficient and the micro-crack orientation angle, and compared to the secondary nonlinear coefficient, the sum frequency nonlinear coefficient is more sensitive to micro-crack orientation detection. At the same time, from the perspective of the average ultrasonic wave energy density, for example, the sound intensity, the sound intensity of the sum frequency component will increase with the increase of the orientation angle of the micro-crack, and the sound intensity of the second harmonic component will not change substantially. The ratio of the sound intensity of the sum frequency component is also significantly higher than that of the second harmonic component. The calculation results of the ultrasonic intensity are basically consistent with the simulation results, which proves the correctness of the theoretical model. Finally, through the design experiments, the use of simulated cracks to verify the validity of the model provides an effective means for the detection of micro-crack orientation of metallic materials.
-
Key words:
- non-destructive testing /
- micro-crack /
- nonlinear ultrasound /
- sum frequency /
- micro-crack orientation
-
表 1 各分量声强计算结果及占比
Table 1. Computation results and proportions of sound intensity of each component
微裂纹取向角度/(°) I′1/(1013W·m-2) I′2/(1013W·m-2) η1/% η2/% 0 1.247 1.797 0.289 0.681 15 2.163 1.951 1.290 0.498 30 1.608 3.541 1.455 0.958 45 3.074 1.762 1.428 1.321 60 3.262 0.3572 2.157 0.134 75 4.264 1.166 4.518 0.273 90 18.41 2.166 4.566 0.518 -
[1] MEYENDORF N G, RÖSNER H, KRAMB V, et al.Thermo-acoustic fatigue characterization[J].Ultrasonics, 2002, 40(1-8):427-434. doi: 10.1016/S0041-624X(02)00155-5 [2] 税国双, 汪越胜, 曲建民.材料力学性能退化的超声无损检测与评价[J].力学进展, 2005, 35(1):52-68. doi: 10.3321/j.issn:1000-0992.2005.01.006SHUI G S, WANG Y S, QU J M.Advances in nondestructive test and evaluation of material degradation using nonlinear ultrasound[J].Advances in Mechanics, 2005, 35(1):52-68(in Chinese). doi: 10.3321/j.issn:1000-0992.2005.01.006 [3] 高桂丽, 李大勇, 董静薇, 等.铝合金薄板疲劳裂纹的非线性声学特性[J].机械工程学报, 2010, 46(18):71-76. http://d.old.wanfangdata.com.cn/Periodical/jxgcxb201018013GAO G L, LI D Y, DONG J W, et al.Nonlinear acoustic characteristics of fatigue cracks in aluminum alloy sheet[J].Journal of Mechanical Engineering, 2010, 46(18):71-76(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jxgcxb201018013 [4] JHANG K Y.Nonlinear ultrasonic techniques for non-destructive assessment of micro damage in material:A review[J].International Journal of Precision Engineering and Manufacturing, 2009, 10(1):123-135. doi: 10.1007/s12541-009-0019-y [5] 周正干, 刘斯明.非线性无损检测技术的研究、应用和发展[J].机械工程学报, 2011, 47(8):2-11. http://d.old.wanfangdata.com.cn/Periodical/jxgcxb201108001ZHOU Z G, LIU S M.Nonlinear ultrasonic techniques used in nondestructive testing:A review[J].Journal of Mechanical Engineering, 2011, 47(8):2-11(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jxgcxb201108001 [6] 焦敬品, 樊仲祥, 吴斌, 等.闭合裂纹非共线混频超声检测试验研究[J].声学学报, 2017, 42(2):205-213. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=shengxxb201702009JIAO J P, FAN Z X, WU B, et al.Experiments of non-collinear mixed frequency ultrasonic for closed crack detection[J].Acta Acustica, 2017, 42(2):205-213(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=shengxxb201702009 [7] 焦敬品, 孙俊俊, 吴斌, 等.结构微裂纹混频非线性超声检测方法研究[J].声学学报, 2013, 38(6):648-656. http://d.old.wanfangdata.com.cn/Conference/7909354JIAO J P, SUN J J, WU B, et al.A frequency-mixing nonlinear ultrasonic technique for micro-crack detection[J].Acta Acustica, 2013, 38(6):648-656(in Chinese). http://d.old.wanfangdata.com.cn/Conference/7909354 [8] JIAO J, MENG X, HE C, et al.Nonlinear Lamb wave-mixing technique for micro-crack detection in plates[J].NDT & E International, 2016, 85:63-71. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1ebdec88aee69e05be7ab1d6b94eaedf [9] CROXFORD A J, WILCOX P D, DRINKWATER B W, et al.The use of non-collinear mixing for nonlinear ultrasonic detection of plasticity and fatigue[J].Journal of the Acoustical Society of America, 2009, 126(5):117-122. doi: 10.1121/1.3231451 [10] SUN M, XIANG Y, DENG M, et al.Scanning non-collinear wave mixing for nonlinear ultrasonic detection and localization of plasticity[J].NDT & E International, 2018, 93:1-6. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7efb0f64b1d168936557af2df1b390c6 [11] MCGOGERN M, REIS H.Damage characterization in dimension limestone cladding using noncollinear ultrasonic wave mixing[J].Optical Engineering, 2015, 55(1):011012. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9092c10d6f45115208c0052b1590778f [12] 冯侠, 邢修三.微裂纹取向对金属断裂过程的影响[J].北京理工大学学报, 1994, 14(3):234-239. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400158147FENG X, XING X S.On the effects of random orientation of microcracks upon the fracture process of metals[J].Journal of Beijing Institute of Technology, 1994, 14(3):234-239(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400158147 [13] COURTNEY C R P, NEILD S A, WILCOX P D, et al.Application of the bispectrum for detection of small nonlinearities excited sinusoidally[J].Journal of Sound & Vibration, 2010, 329(20):4279-4293. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f63f8b2c6329c220ed4e43d1b1439309 [14] DONSKOY D, SUTIN A, EKIMOV A.Nonlinear acoustic interaction on contact interfaces and its use for nondestructive testing[J].NDT & E International, 2001, 34(4):231-238. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=31ab0e6f82a7aff2b2979f3375665286 [15] SOLODOV I Y, KROHN N, BUSSE G.An example of nonclassical acoustic nonlinearity in solids[J].Ultrasonics, 2002, 40(1-8):621-625. doi: 10.1016/S0041-624X(02)00186-5 [16] BREAZEALE M A, PHILIP J.Determination of third-order elastic constants from ultrasonic harmonic generation measurements[M].Pittsburg:Academic Press, 1987. [17] CROXFORD A J, DRINKWATER B W, WILCOX P D.Nonlinear ultrasonic characterization using the noncollinear method[C]//37th Annual Review of Progress in Quantitative Nondestructive Evaluation.New York: AIP, 2011: 330-337. doi: 10.1063/1.3591872 [18] 李海洋, 安志武, 廉国选, 等.粗糙接触界面超声非线性效应的概率模型[J].声学学报, 2015, 40(2):247-253. http://d.old.wanfangdata.com.cn/Conference/8358839LI H Y, AN Z W, LIAN G X, et al.A probability model for ultrasonic nonlinear effects of rough contact interface[J].Acta Acustica, 2015, 40(2):247-253(in Chinese). http://d.old.wanfangdata.com.cn/Conference/8358839