留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CCD器件用机械泵驱动两相流体回路仿真与试验

赵振明 孟庆亮 张焕冬 赵慧

赵振明, 孟庆亮, 张焕冬, 等 . CCD器件用机械泵驱动两相流体回路仿真与试验[J]. 北京航空航天大学学报, 2019, 45(5): 893-901. doi: 10.13700/j.bh.1001-5965.2018.0519
引用本文: 赵振明, 孟庆亮, 张焕冬, 等 . CCD器件用机械泵驱动两相流体回路仿真与试验[J]. 北京航空航天大学学报, 2019, 45(5): 893-901. doi: 10.13700/j.bh.1001-5965.2018.0519
ZHAO Zhenming, MENG Qingliang, ZHANG Huandong, et al. Simulation and experimental study of mechanically pumped two-phase loop for CCD[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(5): 893-901. doi: 10.13700/j.bh.1001-5965.2018.0519(in Chinese)
Citation: ZHAO Zhenming, MENG Qingliang, ZHANG Huandong, et al. Simulation and experimental study of mechanically pumped two-phase loop for CCD[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(5): 893-901. doi: 10.13700/j.bh.1001-5965.2018.0519(in Chinese)

CCD器件用机械泵驱动两相流体回路仿真与试验

doi: 10.13700/j.bh.1001-5965.2018.0519
基金项目: 

国家自然科学基金 51806010

详细信息
    作者简介:

    赵振明  男, 博士, 高级工程师。主要研究方向:遥感器热设计、两相流换热

    孟庆亮  男, 博士, 高级工程师。主要研究方向:微重力下两相流动与传热

    通讯作者:

    孟庆亮, E-mail:qlmeng@mail.ustc.edu.cn

  • 中图分类号: V416;TK124

Simulation and experimental study of mechanically pumped two-phase loop for CCD

Funds: 

National Natural Science Foundation of China 51806010

More Information
  • 摘要:

    电荷耦合元件(CCD)作为航天光学遥感器的核心部件之一,其工作性能受温度影响很大,传统的热控产品难以满足大功率CCD的精密控温需求。通过仿真与试验系统研究了机械泵驱动两相流体回路(MPTL)用于CCD控温时的启动特性、运行状态、内部工质的流动及传热特性。结果表明:MPTL可以通过干度的调节来吸收冷凝器外热流和CCD工作模式的影响;MPTL的控温精度可以达到±1℃,蒸发器并联支路、蒸发器负载和冷凝器温度在一定范围内变化等均不会对系统运行稳定性产生影响,其仍可将CCD器件控制在所需温度;通过仿真与试验对比,发现仿真模型的误差在±1℃以内,验证了模型的有效性和准确度。MPTL可以很好地满足航天光学遥感器CCD的控温要求,能够保证CCD始终具有较好的温度稳定性和均匀性,且系统具有良好的运行特性和鲁棒性,其在CCD精密控温方面具有很好的应用前景。

     

  • 图 1  CCD用机械泵驱动两相流体回路系统组成示意图

    Figure 1.  Schematic of MPTL system composition for CCD

    图 2  MPTL系统瞬态数值模型

    Figure 2.  Transient numerical model for MPTL system

    图 3  轨道外热流变化和CCD工作时序

    Figure 3.  Variation of external heat flux in orbit and working mode of CCD

    图 4  辐射冷凝器上的温度分布云图与管路内气液两相分布图

    Figure 4.  Temperature distribution contour on radiation condenser and gas-liquid two-phase distribution in pipeline

    图 5  低温工况下蒸发器内流体温度和干度随时间的变化曲线

    Figure 5.  Temporal evolution of temperature and quality of working fluid in evaporators for cold case

    图 6  高温工况下蒸发器内流体温度和干度随时间的变化曲线

    Figure 6.  Temporal evolution of temperature and quality of working fluid in evaporators for hot case

    图 7  MPTL系统模装图

    Figure 7.  Mold assembly graph of MPTL system

    图 8  MPTL系统实物图

    Figure 8.  Picture of MPTL system

    图 9  MPTL系统启动过程

    Figure 9.  Start-up process of MPTL system

    图 10  MPTL系统管路内存在气相工质时的启动过程

    Figure 10.  Start-up process of MPTL system pipeline in gas phase

    图 11  储液器控温特性试验结果

    Figure 11.  Test results of temperature control characteristics of liquid accumulator

    图 12  蒸发器并联支路对系统运行特性影响试验结果

    Figure 12.  Test results of influence of parallel branch of evaporator on operation characteristics of system

    图 13  冷凝器温度波动对系统运行特性影响试验结果

    Figure 13.  Test results of influence of temperature fluctuation of condenser on operation characteristics of system

    图 14  仿真与试验结果对比

    Figure 14.  Comparison between simulation and test results

    表  1  验证试验工况

    Table  1.   Verification test condition

    工况试验项目试验内容
    1启动特性
    验证流体回路启动性能, 验证流体回路内存在气相时系统启动性能
    2控温特性验证蒸发器温度随储液器温度变化的响应能力
    3运行特性验证蒸发器并联支路对系统运行特性的影响, 验证冷凝器温度波动对系统运行特性的影响
    下载: 导出CSV
  • [1] 赵英时.遥感应用分析原理与方法[M].北京:科学出版社, 2002.

    ZHAO Y S.Principles and methods of remote sensing application analysis[M].Beijing:Science Press, 2002(in Chinese).
    [2] 赵振明, 雷文平.环路热管在CCD热设计中的应用[C]//第十二届全国热管会议, 2010: 301-306.

    ZHAO Z M, LEI W P. Loop heat pipe application in CCD thermal design[C]//12th Chinese Heat Pipe Conference, 2010: 301-306(in Chinese).
    [3] 童叶龙, 李国强, 余雷, 等.CCD组件的热分析和热试验[J].航天返回与遥感, 2014, 35(5):46-53. doi: 10.3969/j.issn.1009-8518.2014.05.007

    TONG Y L, LI G Q, YU L, et al. Heat dissipation and precise temperature control for high-power CCD assembly[J].Spacecraft Recovery & Remote Sensing, 2014, 35(5):46-53(in Chinese). doi: 10.3969/j.issn.1009-8518.2014.05.007
    [4] 陈恩涛, 卢锷.空间遥感器CCD组件热设计[J].光学精密工程, 2000, 8(6):522-525. doi: 10.3321/j.issn:1004-924X.2000.06.003

    CHEN E T, LU E. Thermal engineering design of CCD component of space remote-sensor[J]. Optics and Precision Engineering, 2000, 8(6):522-525(in Chinese). doi: 10.3321/j.issn:1004-924X.2000.06.003
    [5] GAO T, YANG T, ZHAO S L.The design and application of temperature control loop heat pipe for space CCD camera[C]//International Symposium of Spaces Optical Instrument and Application, 2017: 15-20.
    [6] DELIL A A M, PAUW A, WOERING A A.AMS-2 tracker thermal control system-design and thermal modeling of the mechanically pumped two-phase CO2 loop: AIAA-2003-345[R].Reston: AIAA, 2003.
    [7] LIU J, PEI N Q, GUO K H, et al.Experimental investigation on a mechanically pumped two-phase cooling loop with dual-evaporator[J].International Journal of Refrigeration, 2008, 31(7):1176-1182. doi: 10.1016/j.ijrefrig.2008.02.014
    [8] ZHANG Z, SUN X H, TONG G N, et al.Stable and self-adaptive performance of mechanically pumped CO2 two-phase loops for AMS-02 tracker thermal control in vacuum[J].Applied Thermal Engineering, 2011, 31:3783-3791. doi: 10.1016/j.applthermaleng.2011.07.015
    [9] HUANG Z C, HE Z H, MO D C, et al.Coupling between an accumulator and a loop in a mechanically pumped carbon dioxide two-phase loop[J].Microgravity Science and Technology, 2009, 21(1):23-29. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fe1639a30b1e312cf0a52f791dd12e3c
    [10] 刘杰.航天机械泵驱动两相流冷却环路循环特性的研究[D].上海: 上海交通大学, 2008: 115-117. http://d.wanfangdata.com.cn/Thesis/Y1415517

    LIU J.Investigations on running characteristics of the mechanically pumped two-phase cooling loop for space applications[D].Shanghai: Shanghai Jiao Tong University, 2008: 115-117(in Chinese). http://d.wanfangdata.com.cn/Thesis/Y1415517
    [11] VAN ES J, PAUW A, VAN DONK G.AMS02 tracker thermal control cooling system test results of the AMS02 thermal vacuum test in the LSS at ESA ESTEC: AIAA-2012-3577[R].Reston: AIAA, 2012.
    [12] MO D C, XIAO W J, HUANG Z C, et al.Comparison of pressure drop between calculation and experiment for a two-phase carbon dioxide loop[J].Microgravity Science and Technology, 2008, 20(3-4):183-186. doi: 10.1007/s12217-008-9019-2
    [13] SUN X H, HE Z H, HUANG Z C, et al.Analysis of temperature oscillations in parallel evaporators of a carbon dioxide two-phase loop[J].Microgravity Science and Technology, 2009, 21(Supl 1):299-304. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cb55f4ff633042adfc554e01fea151fc
    [14] KU J T.Operating characteristics of loop heat pipes[C]//29th International Conference on Environmental Systems, 1999: 1991-01-2007.
    [15] 庄礼贤, 尹协远, 马晖扬.流体力学[M].2版.合肥:中国科学技术大学出版社, 2009:65-89.

    ZHUANG L X, YIN X Y, MA H Y.Fluid mechanics[M].2nd ed.Hefei:University of Science and Technology of China Press, 2009:65-89(in Chinese).
    [16] FRIEDEL L.Improved friction pressure drop correlation for horizontal and vertical two-phase pipe flow[C]//European Two-Phase Flow Group Meeting, 1979: 1158-1162.
    [17] MENG Q L, YANG T, LI C L, et al.Numerical simulations and analyses of temperature control loop heat pipe for space CCD camera[J].Journal of Thermal Science, 2016, 25(5):402-409. doi: 10.1007/s11630-016-0877-4
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  435
  • HTML全文浏览量:  9
  • PDF下载量:  333
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-04
  • 录用日期:  2018-11-30
  • 刊出日期:  2019-05-20

目录

    /

    返回文章
    返回
    常见问答