-
摘要:
为了改善飞翼布局背负式S弯进气道低动能来流状态下的流动性能,采用改进的延迟分离涡模拟(IDDES)方法对原型及改进型背负式进气道流场进行了数值模拟研究,对比分析了进气道流量特性及内部脉动压力特性。结果表明:低动能来流时背负式进气道上部唇口附近存在很大的气流转折角,导致唇口产生分离涡;原型进气道唇口分离涡强度高,高能量分离涡在进气道顶部破裂产生了大范围旋涡结构,进一步加剧了流动分离,从而引发进气道内产生强烈的压力脉动,声压级最大幅值高达145 dB;改进型进气道唇口分离涡得到了有效控制,强度大幅下降,进气道内部压力脉动幅值也显著降低,声压级降幅达8 dB;改进型进气道分离的抑制使进气道有效流通截面积增大,质量流量增加。同时,流场出口品质提升,进气道出口综合畸变指数降低了9.5%。
-
关键词:
- 背负式S弯进气道 /
- 分离流动 /
- 改进的延迟分离涡模拟(IDDES) /
- 压力脉动 /
- 流量
Abstract:To improve the dorsal S-shaped inlet flow performance of low-energy inflow.The flow fields of both original and improved dorsal inlet were studied by using improved delayed detached-eddy simulation (IDDES) method, and the mass flow and pressure fluctuation characteristics of the two inlets were compared. The results show that, influenced by the fuselage, airflow turning angle near the inlet lip is very large and this will cause the formation of separation bubbles. The intensity of the separation vortex at the lip of the original inlet is very high. When the separation bubbles with high energy break down at the top of the inlet, massive high-strength vortices are created. These high-strength vortices aggravate the separation near the inlet top and cause fierce pressure fluctuations inside the S-shaped inlet. The amplitude of the sound pressure level can reach 145 dB. The strength of separation bubbles inside the improved inlet issuccessfully decreased, which enlarges the effective flow area of the inlet and increases mass flux. The pressure fluctuations inside the S-shaped inlet decrease and the reduction of sound pressure level is up to 8 dB. Meanwhile, the comprehensive distortion coefficient decreased by 9.5% which improves the characteristic of outlet flow field.
-
表 1 畸变指数
Table 1. Distortion coefficient
工况 εav Δσ0 θ-/(°) W 原型 0.034 0.04 135 0.074 改进型 0.031 0.036 128 0.067 -
[1] 李大伟, 张云飞, 马东立.背负式S形进气道设计及数值分析[J].推进技术, 2006, 27(1):61-65. doi: 10.3321/j.issn:1001-4055.2006.01.015LI D W, ZHANG Y F, MA D L.Design and numerical investigation of dorsal S-shaped inlet[J].Journal of Propulsion Technology, 2006, 27(1):61-65(in Chinese). doi: 10.3321/j.issn:1001-4055.2006.01.015 [2] 李大伟, 马东立.背负式S形进气道流场控制技术[J].北京航空航天大学学报, 2008, 34(12):1456-1459. http://d.old.wanfangdata.com.cn/Periodical/bjhkhtdxxb200812021LI D W, MA D L.Improving dorsal S-shaped inlet performance by vortex flow control[J].Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(12):1456-1459(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/bjhkhtdxxb200812021 [3] 郁新华, 刘斌, 陶于金, 等.背负式进气道设计及其气动性能研究[J].西北工业大学学报, 2007, 25(2):270-273. doi: 10.3969/j.issn.1000-2758.2007.02.024YU X H, LIU B, TAO Y J, et al.Top-mounted inlet design and its aerodynamic performance[J].Journal of Northwestern Polytechnical University, 2007, 25(2):270-273(in Chinese). doi: 10.3969/j.issn.1000-2758.2007.02.024 [4] 谭慧俊, 郭荣伟.一种背负式无附面层隔道进气道的数值模拟研究与实验验证[J].航空学报, 2004, 25(6):540-545. doi: 10.3321/j.issn:1000-6893.2004.06.003TAN H J, GUO R W.Numerical simulation investigation and experimental validation of a top-mounted diverterless inlet and its validation[J].Acta Aeronautica et Astronautica Sinica, 2004, 25(6):540-545(in Chinese). doi: 10.3321/j.issn:1000-6893.2004.06.003 [5] TAN H J, GUO R W.Design and wind tunnel study of a top-mounted diverterless inlet[J].Chinese Journal of Aeronautics, 2004, 17(2):72-78. doi: 10.1016/S1000-9361(11)60217-3 [6] SHI L, GUO R W.Serpentine inlet design and analysis: AIAA-2012-0839[R].Reston: AIAA, 2012. [7] ZHANG Z, XU Q, HOU A.Numerical simulation on aerodynamic performance of dorsal S-shaped inlet[C]//3rd International Symposium on Systems and Control in Aeronautics and Astronautics.Piscataway, NJ: IEEE Press, 2010: 5632898. [8] MURAKAMI Y W A U.Design of top mounted supersonic inlet for silent supersonic technology demonstrator S3TD[C]//27th International Congress of the Aeronautical Sciences, 2010: 1-9. [9] 张乐, 周洲, 许晓平, 等.飞翼无人机3种保形进气口进气道气动与隐身综合特性对比[J].航空动力学报, 2015, 30(7):1651-1660. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201507017ZHANG L, ZHOU Z, XU X P, et al.Comparison on aerodynamic and stealthy performance of flying wing unmanned aerial vehicle with three conformal intake inlets[J].Journal of Aerospace Power, 2015, 30(7):1651-1660(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201507017 [10] 孔德英, 邓文剑, 方力.一种背负式S弯进气道辅助进气门设计[J].航空科学技术, 2016, 27(12):1-7. doi: 10.3969/j.issn.1007-5453.2016.12.001KONG D Y, DENG W J, FANG L.Design of an auxiliary air intake for the dorsal S-shaped inlet[J].Aeronautical Science & Technology, 2016, 27(12):1-7(in Chinese). doi: 10.3969/j.issn.1007-5453.2016.12.001 [11] 徐诸霖, 达兴亚, 范召林.基于五孔探针的大S弯进气道旋流畸变评估[J].航空学报, 2017, 38(12):53-62. http://d.old.wanfangdata.com.cn/Periodical/hkxb201712005XU Z L, DA X Y, FAN Z L.Assessment of swirl distortion of serpentine inlet based on five-hole probe[J].Acta Aeronautica et Astronautica Sinica, 2017, 38(12):53-62(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb201712005 [12] 张航, 谭慧俊, 李湘萍.类X-47狭缝式进气道的流动特征与工作性能[J].航空学报, 2009, 30(12):2243-2249. doi: 10.3321/j.issn:1000-6893.2009.12.001ZHANG H, TAN H J, LI X P.Flowstructure and performance characteristics of X-47-like slot-shaped inlet[J].Acta Aeronautica et Astronautica Sinica, 2009, 30(12):2243-2249(in Chinese). doi: 10.3321/j.issn:1000-6893.2009.12.001 [13] SHUR M L, SPALART P R, STRELETS M K, et al.A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities[J].International Journal of Heat and Fluid Flow, 2008, 29(6):1638-1649. doi: 10.1016/j.ijheatfluidflow.2008.07.001 [14] SPALART P R, DECK S, SHUR M L, et al.A new version of detached-eddy simulation, resistant to ambiguous grid densities[J].Theoretical and Computational Fluid Dynamics, 2006, 20(3):181-195. doi: 10.1007/s00162-006-0015-0 [15] SPALART P, JOU W, STRELETS M, et al.Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach[C]//First AFOSR International Conference on DNS/LES, 1997: 137-147. [16] VENKATAKRISHNAN V.On the accuracy of limiters and convergence to steady state solutions[C]//31st Aerospace Sciences Meeting and Exhibit.Reston: AIAA, 1994: 1-12. [17] JAMESON A.Time dependent calculations using multigrid, with applications to unsteady flows past airfoils and wings[C]//10th Computational Fluid Dynamics Conference.Reston: AIAA, 1991: 1586-1599. [18] SIROVICH L.Turbulence and the dynamics of coherent structures Ⅰ-Ⅲ[J].Quarterly of Applied Mathematics, 1987, 45(3):561-590. doi: 10.1090/qam/1987-45-03 [19] 刘大响, 叶培梁, 胡骏, 等.航空燃气涡轮发动机稳定性设计与评定技术[M].北京:航空工业出版社, 2004.LIU D X, YE P L, HU J, et al.Stability design and assessment technology of aeronautical turbine engine[M].Beijing:Aviation Industry Press, 2004(in Chinese).