留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

THAAD增程型拦截弹预测制导方法

张荣升 陈万春

张荣升, 陈万春. THAAD增程型拦截弹预测制导方法[J]. 北京航空航天大学学报, 2021, 47(4): 863-874. doi: 10.13700/j.bh.1001-5965.2018.0619
引用本文: 张荣升, 陈万春. THAAD增程型拦截弹预测制导方法[J]. 北京航空航天大学学报, 2021, 47(4): 863-874. doi: 10.13700/j.bh.1001-5965.2018.0619
ZHANG Rongsheng, CHEN Wanchun. Predictive guidance method of THAAD-ER interceptor[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(4): 863-874. doi: 10.13700/j.bh.1001-5965.2018.0619(in Chinese)
Citation: ZHANG Rongsheng, CHEN Wanchun. Predictive guidance method of THAAD-ER interceptor[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(4): 863-874. doi: 10.13700/j.bh.1001-5965.2018.0619(in Chinese)

THAAD增程型拦截弹预测制导方法

doi: 10.13700/j.bh.1001-5965.2018.0619
详细信息
    作者简介:

    张荣升   男, 硕士研究生。主要研究方向: 拦截弹预测制导

    陈万春  男, 博士, 教授, 博士生导师。主要研究方向: 导弹总体设计与仿真、导弹飞行动力学、制导与控制

    通讯作者:

    陈万春, E-mail: wanchun_chen@buaa.edu.cn

  • 中图分类号: V448.232;TJ765.3

Predictive guidance method of THAAD-ER interceptor

More Information
  • 摘要:

    根据公开资料对THAAD增程型拦截弹建模,针对大射程的特点规划了高抛弹道,生成标准弹道族。提出了迭代预测命中点法,利用解析方法计算剩余飞行时间,基于多项式拟合法寻找标准弹道,确定预测命中点,完成预测制导任务。将迭代预测命中点法与迭代飞行时间法进行对比,迭代预测命中点法初值选取容易,程序运行时间减少20%,制导过程中无需调用标准弹道文件,节省了计算机存储空间。通过改变射程、航路捷径对预测制导方法进行仿真验证,结果表明,拦截弹拦截射程可覆盖到600 km,并且能完成存在航路捷径时的拦截任务,平均脱靶量在200 m以内,应对气动不确定性的效果良好。

     

  • 图 1  拦截弹主要尺寸

    Figure 1.  Main dimensions of interceptor

    图 2  拦截弹对抗目标示意图

    Figure 2.  Schematic diagram of interceptor against target

    图 3  预测制导流程[19-21]

    Figure 3.  Predictive guidance flowchart[19-21]

    图 4  标准弹道族

    Figure 4.  A bunch of standard trajectories

    图 5  拦截示意图

    Figure 5.  Schematic diagram of interception

    图 6  不同射程拦截对比

    Figure 6.  Comparison of interception with different ranges

    图 7  远距离拦截示例

    Figure 7.  An example of long-range interception

    图 8  抛物线近似标准弹道情况

    Figure 8.  Parabolic approximation of standard trajectory

    图 9  系数abc拟合情况(射程:0~200 km)

    Figure 9.  Fitting of coefficient a, b and c (Range: 0-200 km)

    图 10  系数abc拟合情况(射程:200~400 km)

    Figure 10.  Fitting of coefficient a, b and c (Range: 200-400 km)

    图 11  系数abc拟合情况(射程:400~600 km)

    Figure 11.  Fitting of coefficient a, b and c (Range: 400-600 km)

    图 12  抛物线近似x-t情况

    Figure 12.  Parabolic approximation of x-t

    图 13  系数a2b2c2拟合情况

    Figure 13.  Fitting of coefficient a2, b2 and c2

    图 14  三维拦截仿真图例(射程:50 km及600 km)

    Figure 14.  Examples of 3D interception simulation (Range: 50 km and 600 km)

    图 15  纵平面内拦截情况

    Figure 15.  Interception in vertical plane

    图 16  拦截弹速度

    Figure 16.  Velocity of interceptor

    图 17  拦截弹高度

    Figure 17.  Altitude of interceptor

    图 18  拦截弹与目标的弹下点

    Figure 18.  Projective point of interceptor and target

    图 19  不确定性仿真的脱靶量

    Figure 19.  Miss distance of uncertainty simulation

    图 20  预测制导程序流程

    Figure 20.  Flowchart of predictive guidance program

    表  1  助推器参数

    Table  1.   Parameters of boosters

    级数 质量/kg 推力/kN 燃烧时间/s
    1 860 80 30
    2 170 30 8
    下载: 导出CSV

    表  2  程序运行时间对比

    Table  2.   Program run time comparison

    仿真次数 设定迭代飞行时间法运行时间/s 设定迭代飞行时间法脱靶量/m 设定预测命中点法运行时间/s 设定预测命中点法脱靶量/m 运行时间节省比例/% 脱靶量减少比例/%
    1 28.72 96.89 23.21 16.21 19.19 83.27
    2 29.17 293.83 23.29 83.85 20.16 71.46
    3 29.22 79.10 23.39 79.10 19.95 0
    4 29.14 296.38 22.90 174.68 21.41 41.06
    5 29.32 99.86 22.45 79.49 23.43 20.40
    6 29.03 178.72 23.26 199.82 19.88 -11.81
    7 28.88 251.91 23.12 311.36 19.94 -23.60
    下载: 导出CSV

    表  3  不同射程拦截仿真结果

    Table  3.   Simulation results of interception with different ranges

    设定的预测命中点 射程/km 脱靶量/m 终点 拦截点偏移/m 末速度/ (m·s-1)
    x坐标/m y坐标/m z坐标/m x坐标/m y坐标/m z坐标/m
    -34 862 48 202 -35 956 50.09 15.79 -34 870 48 188 -35 965 19 4 686.31
    -69 770 47 692 -71 961 100.02 19.06 -69 626 47 677 -71 812 208 4 066.02
    -110 274 46 608 -113 736 158.42 28.24 -110 274 46 636 -113 736 29 3 164.37
    -138 417 45 542 -142 763 198.54 36.85 -138 200 45 514 -142 540 312 2 781.90
    -173 091 43 878 -178 526 248.31 81.13 -172 846 43 810 -178 273 359 2 587.59
    -218 956 41 080 -225 831 314.38 23.63 -218 838 41 112 -225 709 173 2 566.10
    -243 346 39 316 -250 987 349.59 63.27 -243 350 39 379 -250 991 63 2 598.21
    -277 268 36 542 -285 973 398.33 86.28 -277 275 36 628 -285 981 86 2 660.54
    -320 014 32 516 -330 062 460.45 194.60 -320 514 32 270 -330 577 759 2 740.87
    -349 067 29 441 -360 027 502.05 199.82 -349 473 29 596 -360 446 604 2 796.76
    -386 483 25 077 -398 618 554.99 1.57 -386 325 25 095 -398 455 228 2 838.07
    -432 395 19 101 -445 971 620.12 385.45 -431 661 19 588 -445 214 1 161 2 834.60
    下载: 导出CSV

    表  4  设定的预测命中点坐标

    Table  4.   Expected predicted impact point coordinate

    序号 x/m y/m z/m
    1 -34 862 48 202 -35 956
    2 -69 770 47 692 -71 961
    3 -138 417 45 542 -142 763
    4 -277 268 36 542 -285 973
    下载: 导出CSV

    表  5  存在航路捷径时的脱靶量

    Table  5.   Miss distance with course shortcut

    航路捷径/km 脱靶量/m
    点1 点2 点3 点4
    0 3.64 19.06 36.85 86.28
    50 6.05 4.85 33.76 118.10
    100 36.12 82.94 24.95 134.39
    150 178.31 75.37 33.20 258.81
    200 87.18 124.92 71.07 449.50
    250 55.86 42.33 127.59 415.55
    300 37.56 52.74 153.13 326.55
    350 95.33 104.96 217.85 135.17
    400 180.90 191.41 353.20 128.68
    450 260.17 230.11 225.70
    500 260.78 168.21 109.11
    550 125.82 103.70 167.82
    600 319.18 377.57
    下载: 导出CSV

    表  6  不确定性仿真结果

    Table  6.   Uncertainty simulation results

    射程/km 无噪声脱靶量/m 有噪声平均脱靶量/m 有噪声脱靶量标准差/m 平均飞行时间/s 有噪声脱靶量最大值/m
    158.42 28.24 27.94 2.08 69.73 32.66
    349.59 63.27 83.21 11.25 147.65 118.10
    554.99 1.57 18.04 13.02 210.51 60.86
    620.12 385.45 384.89 23.31 228.39 435.42
    下载: 导出CSV
  • [1] ZARCHAN P.Tactical and strategic missile guidance[M]. 6th ed. Reston: AIAA, 2012.
    [2] KUMAR P, DWIVEDI P N, BHATTACHARYA A, et al. Variable gain predictive PN guidance for interception of high speed re-entry targets[J]. IFAC-PapersOnLine, 2018, 51(1): 64-71. doi: 10.1016/j.ifacol.2018.05.012
    [3] 李辕, 赵继广, 白国玉, 等. 基于预测碰撞点的剩余飞行时间估计方法[J]. 北京航空航天大学学报, 2016, 42(8): 1667-1674. doi: 10.13700/j.bh.1001-5965.2015.0509

    LI Y, ZHAO J G, BAI G Y, et al. Method of time-to-go estimation based on predicted crack point[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(8): 1667-1674(in Chinese). doi: 10.13700/j.bh.1001-5965.2015.0509
    [4] 李辕, 闫梁, 赵继广, 等. 顺轨拦截模式剩余飞行时间估计方法[J]. 航空学报, 2015, 36(9): 3082-3091. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201509033.htm

    LI Y, YAN L, ZHAO J G, et al. The method of time-to-go estimation for head-pursuit engagement[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(9): 3082-3091(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201509033.htm
    [5] DHANANJAY N, GHOSE D.Accurate time-to-go estimation for proportional navigation guidance[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(4): 1378-1383. doi: 10.2514/1.G000082
    [6] GHOSH S, GHOSE D, RAHA S.Unified time-to-go algorithms for proportional navigation class of guidance[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(6): 1-18.
    [7] GRUBIN C, SHULTZ P, SOUFL R.A boost guidance scheme for following a trajectory profile and satisfying injection constraints[C]//Astrodynamics Guidance and Control Conference, 1964: 639.
    [8] SALAMA M, HANCOCK G, SHOUMAN A.The predicted interception guidance method[C]//25th AIAA Aerospace Sciences Meeting.Reston: AIAA, 1987: 126.
    [9] 张华伟, 董茜, 王文灿, 等. 基于预测命中点的反弹道导弹拦截方法研究[J]. 弹箭与制导学报, 2007, 27(2): 196-199. doi: 10.3969/j.issn.1673-9728.2007.02.062

    ZHANG H W, DONG Q, WANG W C, et al. Rearch way of intercepting ballistic missile based on the forecasting hitting position[J]. Journal of Projectiles Rockets, Missiles and Guidance, 2007, 27(2): 196-199(in Chinese). doi: 10.3969/j.issn.1673-9728.2007.02.062
    [10] ZHANG X, LEI H M, LI J, et al.Ballistic missile trajectory prediction and the solution algorithms for impact point prediction[C]//Proceedings of 2014 IEEE Chinese Guidance, Navigation and Control Conference.Piscataway: IEEE Press, 2014: 879-883.
    [11] ZHAO Y T, HU Y A, ZHANG Y A.Design and simulation of an optimal guidance law for ship-air missile based on interception point prediction[C]//2011 Chinese Control and Decision Conference (CCDC).Piscataway: IEEE Press, 2011: 3647-3652.
    [12] HAHN P V, FREDERICK R A, SLEGERS N.Predictive guidance of a projectile for hit-to-kill interception[J]. IEEE Transactions on Control Systems Technology, 2009, 17(4): 745-755. doi: 10.1109/TCST.2008.2004440
    [13] DWIVEDI P N, BHALE P G, BHATTACHARYYA A, et al. Generalized state estimation and model predictive guidance for spiraling and ballistic targets[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(1): 243-264. doi: 10.2514/1.60075
    [14] SONG E J, TAHK M J.Real-time midcourse guidance with intercept point prediction[J]. Control Engineering Practice, 1998, 6(8): 957-967. doi: 10.1016/S0967-0661(98)00041-0
    [15] ZHANG J, YOU L Q, CHEN W C.Boost-phase guidance with neural network for interception of ballistic missile[C]//International Conference on Control, Automation and Information Sciences.Piscataway: IEEE Press, 2015: 426-431.
    [16] 陈万春. 一种基于多项式拟合法的拦截弹预测制导方法:

    CN107766967A[P].2018-03-06.CHEN W C.A predictive guidance law of interceptor based on polynomial fitting method: CN107766967A[P].2018-03-06(in Chinese).
    [17] 尤刘球. 动能拦截弹目标信息估计与预测制导方法研究[D]. 北京: 北京航空航天大学, 2017: 1-2.

    YOU L Q.Research on target information estimation and predictive guidance[D].Beijing: Beihang University, 2017: 1-2(in Chinese).
    [18] 韩英宏, 雷延花, 梁卓, 等. 带侧窗动能杀伤器直接力姿态控制[J]. 航天控制, 2015, 33(4): 51-55. doi: 10.3969/j.issn.1006-3242.2015.04.009

    HAN Y H, LEI Y H, LIANG Z, et al. Direct force attitude control of kinetic kill vehicle with side window[J]. Aerospace Control, 2015, 33(4): 51-55(in Chinese). doi: 10.3969/j.issn.1006-3242.2015.04.009
    [19] 谢经纬, 陈万春. 大气层外拦截弹建模与攻防效能分析[J]. 北京航空航天大学学报, 2018, 44(9): 1826-1838. doi: 10.13700/j.bh.1001-5965.2018.0095

    XIE J W, CHEN W C.Modeling of exo-atmospheric interceptor and effectiveness analysis for penetration and defense[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(9): 1826-1838(in Chinese). doi: 10.13700/j.bh.1001-5965.2018.0095
    [20] 盛永智, 陈万春, 孟璇. 反导预测拦截及防御问题研究[C]//2005中国飞行力学学术年会, 2005: 110-115.

    SHENG Y Z, CHEN W C, MENG X.Research on predictive interception and defense of antimissile[C]//2005 Proceedings of China Annual Conference on Flight Mechanics, 2005: 110-115(in Chinese).
    [21] 李静琳, 陈万春, 闵昌万. 高超末段机动突防/精确打击弹道建模与优化[J]. 北京航空航天大学学报, 2018, 44(3): 555-567. doi: 10.13700/j.bh.1001-5965.2017.0308

    LI J L, CHEN W C, MIN C W.Terminal hypersonic trajectory modeling and optimization for maneuvering penetration and precision strike[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(3): 555-567(in Chinese). doi: 10.13700/j.bh.1001-5965.2017.0308
    [22] 周慧钟, 李忠应, 王瑾枚. 有翼导弹飞行动力学[M]. 北京: 北京航空航天大学出版社, 1983: 46-47.

    ZHOU H Z, LI Z Y, WANG J M.Flight dynamics of winged missiles[M]. Beijing: Beihang University Press, 1983: 46-47(in Chinese).
    [23] 陈桂秀. 用程序求解最小二乘拟合多项式的系数[J]. 青海师范大学学报(自然科学版), 2010, 26(3): 14-17. doi: 10.3969/j.issn.1001-7542.2010.03.004

    CHEN G X.Solve the least square curve fitting polynomial coefficient with program[J]. Journal of Qinghai Normal University(Natural Science Edition), 2010, 26(3): 14-17(in Chinese). doi: 10.3969/j.issn.1001-7542.2010.03.004
    [24] 刘瑶, 张占月, 黄梓辰, 等. 基于拦截纵深的中段反导武器部署研究[J]. 指挥与控制学报, 2017, 3(2): 119-126. doi: 10.3969/j.issn.2096-0204.2017.02.0119

    LIU Y, ZHANG Z Y, HUANG Z C, et al. Deployment of midcourse anti-missile weapon based on intercepting depth[J]. Journal of Command and Control, 2017, 3(2): 119-126(in Chinese). doi: 10.3969/j.issn.2096-0204.2017.02.0119
    [25] 刘芳, 陈万春. PAC-3拦截弹六自由度反导建模与拦截仿真分析[J]. 飞行力学, 2012, 30(5): 440-443. https://www.cnki.com.cn/Article/CJFDTOTAL-FHLX201205016.htm

    LIU F, CHEN W C.PAC-3 interceptor 6DOF antimissile modeling and intercept simulation analysis[J]. Flight Dynamics, 2012, 30(5): 440-443(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-FHLX201205016.htm
  • 加载中
图(20) / 表(6)
计量
  • 文章访问数:  697
  • HTML全文浏览量:  131
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-29
  • 录用日期:  2019-01-11
  • 网络出版日期:  2021-04-20

目录

    /

    返回文章
    返回
    常见问答