留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

桁架拓扑优化几何稳定性判定法和约束方案比较

郝宝新 周志成 曲广吉 李东泽

郝宝新, 周志成, 曲广吉, 等 . 桁架拓扑优化几何稳定性判定法和约束方案比较[J]. 北京航空航天大学学报, 2019, 45(8): 1663-1673. doi: 10.13700/j.bh.1001-5965.2018.0624
引用本文: 郝宝新, 周志成, 曲广吉, 等 . 桁架拓扑优化几何稳定性判定法和约束方案比较[J]. 北京航空航天大学学报, 2019, 45(8): 1663-1673. doi: 10.13700/j.bh.1001-5965.2018.0624
HAO Baoxin, ZHOU Zhicheng, QU Guangji, et al. Comparison of determining methods and constraint schemes for geometric stability in truss topology optimization[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(8): 1663-1673. doi: 10.13700/j.bh.1001-5965.2018.0624(in Chinese)
Citation: HAO Baoxin, ZHOU Zhicheng, QU Guangji, et al. Comparison of determining methods and constraint schemes for geometric stability in truss topology optimization[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(8): 1663-1673. doi: 10.13700/j.bh.1001-5965.2018.0624(in Chinese)

桁架拓扑优化几何稳定性判定法和约束方案比较

doi: 10.13700/j.bh.1001-5965.2018.0624
基金项目: 

国家自然科学基金 11402281

详细信息
    作者简介:

    郝宝新  男, 博士研究生。主要研究方向:航天器结构优化设计

    周志成  男, 博士, 研究员, 博士生导师, 中国工程院院士。主要研究方向:航天器总体设计、航天器动力学

    曲广吉  男, 研究员。主要研究方向:航天器动力学与控制、航天器总体设计

    李东泽  男, 博士, 高级工程师。主要研究方向:航天器总体设计、航天器结构优化设计

    通讯作者:

    周志成, E-mail: zhouzhicheng@cast.cn

  • 中图分类号: O224;TU323.4

Comparison of determining methods and constraint schemes for geometric stability in truss topology optimization

Funds: 

National Natural Science Foundation of China 11402281

More Information
  • 摘要:

    为提高桁架结构几何稳定性的判定准确度和桁架拓扑优化结果的工程实用性,对桁架结构几何稳定性的判定方法和桁架结构拓扑优化问题中3种几何稳定约束方案的有效性进行了比较研究。首先结合简单桁架示例,对比了判定桁架结构几何稳定性的几种方法,给出评估桁架结构几何稳定性的一种简单流程;然后对处理桁架结构几何稳定性的3种常见约束方案,给出了对应拓扑优化问题的一个统一的半定规划(SDP)模型;最后结合算例讨论了3种几何稳定约束方案下的拓扑优化结果,说明了不同方案的有效性。结果表明,考虑附加载荷或全局稳定约束均不能保证优化后桁架结构的几何稳定性,但在约束值合理设置的情况下,考虑基频约束则可以保证。

     

  • 图 1  桁架结构几何稳定性的判定流程

    Figure 1.  Flowchart for determining truss geometric stability

    图 2  10杆桁架基结构及不同工况下优化后的拓扑

    Figure 2.  10-bar truss ground structure and optimized topologies under different load combinations

    图 3  33杆桁架基结构及不同基频约束下优化后的拓扑

    Figure 3.  33-bar truss ground structure and optimized topologies under different fundamental frequency constraints

    图 4  33杆桁架不合理基频约束下的拓扑优化结果

    Figure 4.  Topology optimization results of 33-bar truss under unreasonable fundamental frequency constraints

    图 5  4杆桁架基结构及不同约束和载荷值下的拓扑优化结果

    Figure 5.  4-bar truss ground structure and topology optimization results under different constraints and loads

    图 6  88杆桁架基结构及不同设定下优化后的拓扑

    Figure 6.  88-bar truss ground structure and optimized topologies under different settings

    表  1  不同方法对几何稳定性的判定结果

    Table  1.   Geometric stability determined by different methods

    编号 拓扑 方法1) 方法2) 方法3) 方法4) nDOF kDOF
    1 × × × × 2 2
    2 × × × 1 1
    3 × × × 1 1
    4 × × × 0 1
    下载: 导出CSV

    表  2  88杆桁架基结构及优化结果特性

    Table  2.   Properties of ground structure and optimized topologies for 88-bar truss

    结构 杆数 体积 几何稳定 柔度 基频 临界屈曲载荷因子
    基结构 88 157 0.03 0.080 9 64.244*
    图 6(b) 22 66.879 否(N20) 0.03 307.39
    图 6(c) 42 67.704 否(N3) 0.03 1.133 8
    图 6(d) 55 67.392 0.03 0.079 5 0.548 9
    图 6(e) 41 66.927 否(N8) 0.03 0.869 1
    注:*表示本文分析所得基结构的临界屈曲载荷因子为64.244,与Nastran分析结果一致;文献[14]中该数据值为1.074,疑有误。
    下载: 导出CSV
  • [1] RULE W K.Automatic truss design by optimized growth[J].Journal of Structural Engineering, 1994, 120(10):3063-3070. doi: 10.1061/(ASCE)0733-9445(1994)120:10(3063)
    [2] MCKEOWN J J.Growing optimal pin-jointed frames[J].Structural Optimization, 1998, 15(2):92-100. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ02253635/
    [3] MARTÍNEZ P, MARTÍ P, QUERIN O M.Growth method for size, topology, and geometry optimization of trusss structures[J].Structural and Multidisciplinary Optimization, 2007, 33(1):13-26. https://www.researchgate.net/publication/225431892_Growth_method_for_size_topology_and_geometry_optimization_of_truss_structures
    [4] HAGISHITA H, OHSAKI M.Topology optimization of trusses by growing ground structure method[J].Structural and Multidisciplinary Optimization, 2009, 37(4):377-393. doi: 10.1007/s00158-008-0237-4
    [5] HOOSHMAND A, CAMPBELL M I.Truss layout design and optimization using a generative synthesis[J].Computers and Structures, 2016, 163:1-28. doi: 10.1016/j.compstruc.2015.09.010
    [6] DORN W, GOMORY R, GREENBERG M.Automatic design of optimal structures[J].Journal de Mechanique, 1964, 3:25-52. http://cn.bing.com/academic/profile?id=8522bcecce5f53969315bebaabe4bf08&encoded=0&v=paper_preview&mkt=zh-cn
    [7] TYAS A, GILBERT M, PRITCHARD T.Practical plastic layout optimization of trusses incorporating stability considerations[J].Computers and Structures, 2006, 84:115-126. doi: 10.1016/j.compstruc.2005.09.032
    [8] DESCAMPS B, COELHO R F.The nominal force method for truss geometry and topology optimization incorporating stability considerations[J].International Journal of Solids and Structures, 2014, 51:2390-2399. doi: 10.1016/j.ijsolstr.2014.03.003
    [9] OHSAKI M, KATOH N.Topology optimization of trusses with stress and local constraints on nodal stability and member intersection[J].Structural and Multidisciplinary Optimization, 2005, 29(3):190-197. http://cn.bing.com/academic/profile?id=fdba10bb723d21d44b6ac5a88bbbd456&encoded=0&v=paper_preview&mkt=zh-cn
    [10] CERVEIRA A, AGRA A, BASTOS F, et al.A new branch and bound method for a discrete truss topology design problem[J].Computational Optimization and Applications, 2013, 54(1):163-187. doi: 10.1007/s10589-012-9487-6
    [11] MELA K.Resolving issues with member buckling in truss topology optimization using a mixed variable approach[J].Structural and Multidisciplinary Optimization, 2014, 50(6):1037-1049. doi: 10.1007/s00158-014-1095-x
    [12] 冷国俊, 张卓, 保宏, 等.考虑重叠过滤及稳定性约束的桁架拓扑优化方法[J].工程力学, 2013, 30(2):8-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gclx201302002

    LENG G J, ZHANG Z, BAO H, et al.Topology optimization of truss structure based on overlapping-filter and stability constraints[J].Engineering Mechanics, 2013, 30(2):8-12(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gclx201302002
    [13] GUO X, CHENG G D, OLHOFF N.Optimum design of truss topology under buckling constraints[J].Structural and Multidisciplinary Optimization, 2005, 30(3):169-180. doi: 10.1007/s00158-004-0511-z
    [14] KOČVARA M.On the modelling and solving of the truss design problem with global stability constraints[J].Structural and Multidisciplinary Optimization, 2002, 23(3):189-203. http://cn.bing.com/academic/profile?id=924de4433759ec33a9d5dad8b5a134f2&encoded=0&v=paper_preview&mkt=zh-cn
    [15] DEB K, GULATI S.Design of truss-structures for minimum weight using genetic algorithms[J].Finite Elements in Analysis and Design, 2001, 37(5):447-465. doi: 10.1016/S0168-874X(00)00057-3
    [16] SAVSANI V J, TEJANI G G, PATEL V K, et al.Modified meta-heuristics using random mutation for truss topology optimization with static and dynamic constraints[J].Journal of Computational Design and Engineering, 2017, 4(2):106-130. doi: 10.1016/j.jcde.2016.10.002
    [17] RICHARDSON J N, ADRIAENSSENS S, BOUILLARD P, et al.Multiobjective topology optimization of truss structures with kinematic stability repair[J].Structural and Multidisciplinary Optimization, 2012, 46(4):513-532. doi: 10.1007/s00158-012-0777-5
    [18] AHRARI A, DEB K.An improved fully stressed design evolution strategy for layout optimization of truss structures[J].Computers and Structures, 2016, 164:127-144. doi: 10.1016/j.compstruc.2015.11.009
    [19] PELLEGRINO S, CALLADINE C R.Matrix analysis of statically and kinematically indeterminate frameworks[J].International Journal of Solids and Structures, 1986, 22(4):409-428. doi: 10.1016/0020-7683(86)90014-4
    [20] PELLEGRINO S.Structural computations with the singular value decomposition of the equilibrium matrix[J].International Journal of Solids and Structures, 1993, 30(21):3025-3035. doi: 10.1016/0020-7683(93)90210-X
    [21] 阎军, 杨春秋.计算结构力学[M].北京:科学出版社, 2014:1-3.

    YAN J, YANG C Q.Computational structural mechanics[M].Beijing:Science Press, 2014:1-3(in Chinese).
    [22] 修乃华, 罗自炎.半定规划[M].北京:北京交通大学出版社, 2014:1-79.

    XIU N H, LUO Z Y.Semidefinite programming[M].Beijing:Beijing Jiaotong University Press, 2014:1-79(in Chinese).
    [23] BEN-TAL A, NEMIROVSKI A.Robust truss topology design via semidefinite programming[J].SIAM Journal on Optimization, 1997, 7(4):991-1016. doi: 10.1137/S1052623495291951
    [24] OHSAKI M, FUJISAWA K, KATOH N, et al.Semi-definite programming for topology optimization of trusses under multiple eigenvalue constraints[J].Computer Methods in Applied Mechanics and Engineering, 1999, 180(1-2):203-217. doi: 10.1016/S0045-7825(99)00056-0
    [25] BEN-TAL A, JARRE F, KOČVARA M, et al.Optimal design of trusses under a nonconvex global buckling constraint[J].Optimization and Engineering, 2000, 1(2):189-213. doi: 10.1023/A:1010091831812
    [26] ACHTZIGER W, KOČVARA M.On the maximization of the fundamental eigenvalue in topology optimization[J].Structural and Multidisciplinary Optimization, 2007, 34(3):181-195. doi: 10.1007/s00158-007-0117-3
    [27] STURM J F.Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones[J].Optimization Methods and Software, 1999, 11(1-4):625-653. doi: 10.1080/10556789908805766
    [28] TÜTÜNCÜ R H, TOH K C, TODD M J.Solving semidefinite-quadratic-linear programs using SDPT3[J].Mathematical Programming, 2003, 95(2):189-217. doi: 10.1007/s10107-002-0347-5
    [29] FIALA J, KOČVARA M, STINGL M.PENLAB: A MATLAB solver for nonlinear semidefinite optimization[J/OL].(2013-11-20)[2018-08-20].http://arxiv.org/abs/1311.5240.
    [30] KANNO Y, OHSAKI M, KATOH N.Sequential semidefinite programming for optimization of framed structures under multimodal buckling constraints[J].International Journal of Structural Stability and Dynamics, 2001, 1(4):585-602. doi: 10.1142/S0219455401000305
    [31] 张贤达.矩阵分析与应用[M].2版.北京:清华大学出版社, 2013:61-67.

    ZHANG X D.Matrix analysis and applications[M].2nd ed.Beijing:Tsinghua University Press, 2013:61-67(in Chinese).
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  746
  • HTML全文浏览量:  110
  • PDF下载量:  314
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-29
  • 录用日期:  2019-04-15
  • 网络出版日期:  2019-08-20

目录

    /

    返回文章
    返回
    常见问答