留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于SLM的模拟月壤原位成形技术

李雯 徐可宁 黄勇 胡文颖 王道宽 姚思齐

李雯, 徐可宁, 黄勇, 等 . 基于SLM的模拟月壤原位成形技术[J]. 北京航空航天大学学报, 2019, 45(10): 1931-1937. doi: 10.13700/j.bh.1001-5965.2018.0690
引用本文: 李雯, 徐可宁, 黄勇, 等 . 基于SLM的模拟月壤原位成形技术[J]. 北京航空航天大学学报, 2019, 45(10): 1931-1937. doi: 10.13700/j.bh.1001-5965.2018.0690
LI Wen, XU Kening, HUANG Yong, et al. In-situ forming of lunar regolith simulant via selective laser melting[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(10): 1931-1937. doi: 10.13700/j.bh.1001-5965.2018.0690(in Chinese)
Citation: LI Wen, XU Kening, HUANG Yong, et al. In-situ forming of lunar regolith simulant via selective laser melting[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(10): 1931-1937. doi: 10.13700/j.bh.1001-5965.2018.0690(in Chinese)

基于SLM的模拟月壤原位成形技术

doi: 10.13700/j.bh.1001-5965.2018.0690
基金项目: 

国家自然科学基金 51705490

国家自然科学基金 51876004

国防科技创新特区项目 

详细信息
    作者简介:

    李雯  女, 博士, 研究员。主要研究方向:特种材料增材制造技术及其多尺度数值仿真技术

    黄勇  男, 博士, 教授, 博士生导师。主要研究方向:空间热辐射理论

    通讯作者:

    李雯, E-mail: mosquato@buaa.edu.cn

  • 中图分类号: V11;TH16

In-situ forming of lunar regolith simulant via selective laser melting

Funds: 

National Natural Science Foundation of China 51705490

National Natural Science Foundation of China 51876004

National Defense Science and Technology Innovation Special Zone Project 

More Information
  • 摘要:

    激光选区熔化(SLM)技术与原位资源利用(ISRU)概念结合,有望解决地外大规模基地建设的工程难题。利用模拟月壤考察了SLM成形技术用于月球原位资源增材制造的可行性。采用高能束激光为热源,对粉床内模拟月壤颗粒进行逐层照射,使颗粒熔融固结。以激光体积能量密度为综合评价指标,开展SLM工艺参数研究,实现模拟月壤的低能耗、高效率、高几何精度成形。研究结果表明:模拟月壤在激光工作波长吸收率高,热稳定性好,利用较低激光能量可实现模拟月壤SLM成形,成形件几何精度高;激光体积能量密度决定了成形件质量,增加激光体积能量密度可以提高成形件力学性能,但过高的激光体积能量密度使成形件发生严重变形;模拟月壤颗粒形态复杂、粒度分布广、流动性差,通过优化颗粒粒径分布范围,可以有效提高粉体的流动性,从而形成致密且均匀的粉床,避免成形件缺陷的产生。

     

  • 图 1  模拟月壤SEM照片[15]

    Figure 1.  SEM image of lunar regolith simulant[15]

    图 2  模拟月壤的吸收曲线

    Figure 2.  Absorbance curve of lunar regolith simulant

    图 3  模拟月壤TGA曲线

    Figure 3.  TGA curve of lunar regolith simulant

    图 4  模拟月壤DSC曲线

    Figure 4.  DSC curve of lunar regolith simulant

    图 5  模拟月壤的粒径级配曲线

    Figure 5.  Particle size distribution curves of lunar regolith simulant

    图 6  模拟月壤SLM实验结果

    Figure 6.  Experimental results of lunar regolith simulant by SLM

    表  1  模拟月壤与A12样品的化学成分对比

    Table  1.   Comparison of composition of chemical elements in lunar regolith simulant and A12 returned sample

    化学元素 质量分数/%
    模拟月壤 A12月壤[11]
    O 36.48 46.31
    Si 23.38 21.60
    Fe 8.89 11.70
    Ti 1.01 1.80
    Al 2.78 3.40
    Cr 0.12
    Mn 0.15
    Mg 7.26 5.60
    Ca 12.22 7.60
    Na 0.85 0.40
    K 0.26
    P 0.17
    S 0.12
    下载: 导出CSV

    表  2  实验采用的工艺参数

    Table  2.   Process parameters used during experimental procedure

    参数 数值 参考值[17]
    激光输出功率P/W 40 10~50
    激光工作波长λ/μm 1.07 1.07~1.09
    激光光斑直径ϕ/μm 70 100~300
    激光扫描速度v/(mm·s-1) 190 20~300
    激光扫描间距HD/μm 140 210~300
    铺粉层厚LT/μm 100 100~350
    基板预热温度T/℃ 200 200
    下载: 导出CSV

    表  3  齿轮成形件几何尺寸的设计值与测量值

    Table  3.   Designed and measured geometric dimension for fabricated gear

    参数 中心圆直径 齿顶圆直径 齿根圆直径
    设计值/mm 44.19 39.00 26.00
    测量平均值/mm 44.28 39.36 25.75
    下载: 导出CSV
  • [1] 董鹏, 陈济轮.国外选区激光熔化成型技术在航空航天领域应用现状[J].航天制造技术, 2014(1):1-5. http://www.cnki.com.cn/Article/CJFDTotal-HTGY201401001.htm

    DONG P, CHEN J L.Current status of selective laser melting for aerospace applications abroad[J].Aerospace Manufacturing Technology, 2014(1):1-5(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-HTGY201401001.htm
    [2] SANDERS G B, LARSON W E, PICARD M.Development and demonstration of sustainable surface infrastructure for moon/mars exploration: NASA-20110016205[R].Washington, D.C.: NASA, 2011.
    [3] FATERI M, GEBHARDT A.Experimental investigation of selective laser melting of lunar regolith for in-situ applications[C]//ASME International Mechanical Engineering Congress and Exposition, 2013: V02AT02A008.
    [4] 李志杰, 果琳丽.月球原位资源利用技术研究[J].国际太空, 2017(3):44-50. http://d.old.wanfangdata.com.cn/Periodical/gjtk201703009

    LI Z J, GUO L L.Research on the technology of lunar in-situ resource utilization[J].Space International, 2017(3):44-50(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/gjtk201703009
    [5] 王志浩, 刘宇明, 田东波, 等.月壤原位成型技术工程适用性浅析[J].航天器环境工程, 2018, 35(3):298-306. doi: 10.3969/j.issn.1673-1379.2018.03.017

    WANG Z H, LIU Y M, TIAN D B, et al.A brief analysis of the engineering applicability of lunar soil in-situ forming technology[J].Spacecraft Environment Engineering, 2018, 35(3):298-306(in Chinese). doi: 10.3969/j.issn.1673-1379.2018.03.017
    [6] CECCANTI F, DINI E, KESTELIER X D, et al.3D printing technology for a moon outpost exploiting lunar soil[C]//61st International Astronautical Congress.Paris: International Astronautical Federation, 2010: 1-9.
    [7] BALLA V K, ROBERSON L B, OCONNOR G W, et al.First demonstration on direct laser fabrication of lunar regolith parts[J].Rapid Prototyping Journal, 2012, 18(6):451-457. doi: 10.1108/13552541211271992
    [8] FATERI M, GEBHARDT A.Process parameters development of selective laser melting of lunar regolith for on-site manufacturing applications[J].International Journal of Applied Ceramic Technology, 2015, 12(1):46-52. doi: 10.1111/ijac.12326
    [9] GOULAS A, BINNER J G P, HARRIS R A, et al.Assessing extraterrestrial regolith material simulants for in-situ resource utilization based 3D printing[J].Applied Materials Today, 2017, 6:54-61. doi: 10.1016/j.apmt.2016.11.004
    [10] GERDESL N, FOKKEN G, LINKE S, et al.Selective laser melting for processing of regolith in support of a lunar base[J].Journal of Laser Applications, 2018, 30(3):032018. doi: 10.2351/1.5018576
    [11] MCKAY D S, HEIKEN G H, VANIMAN D T, et al.The lunar regolith in the lunar sourcebook[M].Cambridge:Cambridge University Press, 1991:285-365.
    [12] 李雯.轮式月面探测器牵引通过性的细观力学研究[D].北京: 北京航空航天大学, 2008.

    LI W.Meso-mechanical study on trafficability for wheeled lunar rover vehicle[D].Beijing: Beihang University, 2008(in Chinese).
    [13] 欧阳自远.月球科学概论[M].北京:中国宇航出版社, 2005:12-19.

    OUYANG Z Y.Introduction to lunar science[M].Beijing:China Aerospace Press, 2005:12-19(in Chinese).
    [14] 贾阳, 申振荣, 党兆龙, 等.模拟月壤研究及其在月球探测工程中的应用[J].航天器环境工程.2014, 31(3):241-247. doi: 10.3969/j.issn.1673-1379.2014.03.002

    JIA Y, SHEN Z R, DANG Z L, et al.Lunar soil simulant and its engineering application in lunar exploration program[J].Spacecraft Environment Engineering, 2014, 31(3):241-247(in Chinese). doi: 10.3969/j.issn.1673-1379.2014.03.002
    [15] HUANG Y, ZHAO R, LI W.Radiative characteristics of nonspherical particles based on a particle superposition model[J].Journal of Geophysical Research, 2013, 118(20):11762-11769. http://cn.bing.com/academic/profile?id=6b266e85fcc4827273fb0c9c03907d74&encoded=0&v=paper_preview&mkt=zh-cn
    [16] HEIKEN G, VANIMAN D, FRENCH B.Lunar sourcebook:A user's guide to the moon[M].Cambridge:Cambridge University Press, 1991.
    [17] GONG H, RAFI K, GU H, et al.Analysis of defect generation in Ti-6Al-4V parts made using powder bed fusion additive manufacturing processes[J].Additive Manufacturing, 2014, 1-4:87-98. doi: 10.1016/j.addma.2014.08.002
    [18] GOULAS A, FRIEL R J.3D printing with moondust[J].Rapid Prototyping Journal, 2016, 22(6):864-870. doi: 10.1108/RPJ-02-2015-0022
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  484
  • HTML全文浏览量:  15
  • PDF下载量:  385
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-23
  • 录用日期:  2019-05-28
  • 刊出日期:  2019-10-20

目录

    /

    返回文章
    返回
    常见问答