-
摘要:
激光选区熔化(SLM)技术与原位资源利用(ISRU)概念结合,有望解决地外大规模基地建设的工程难题。利用模拟月壤考察了SLM成形技术用于月球原位资源增材制造的可行性。采用高能束激光为热源,对粉床内模拟月壤颗粒进行逐层照射,使颗粒熔融固结。以激光体积能量密度为综合评价指标,开展SLM工艺参数研究,实现模拟月壤的低能耗、高效率、高几何精度成形。研究结果表明:模拟月壤在激光工作波长吸收率高,热稳定性好,利用较低激光能量可实现模拟月壤SLM成形,成形件几何精度高;激光体积能量密度决定了成形件质量,增加激光体积能量密度可以提高成形件力学性能,但过高的激光体积能量密度使成形件发生严重变形;模拟月壤颗粒形态复杂、粒度分布广、流动性差,通过优化颗粒粒径分布范围,可以有效提高粉体的流动性,从而形成致密且均匀的粉床,避免成形件缺陷的产生。
-
关键词:
- 月球探测 /
- 模拟月壤 /
- 原位制造 /
- 原位资源利用(ISRU) /
- 增材制造
Abstract:Selective laser melting (SLM) technique in combination with the in-situ resource utilization (ISRU) concept can be an off-world manufacturing solution to the significant engineering challenge on the large-scale construction for extra-terrestrial bases. The feasibility of SLM process applied to the additive manufacturing of lunar in-situ resource was investigated by utilizing lunar regolith simulant. A laser source was utilized to melt the powder locally in a layer-wise manner. In order to successfully fuse the powder into parts with low laser power, high efficiency and high geometrical accuracy, the SLM process parameters were investigated and evaluated by laser volume energy density. The results show that the simulant can be successfully fused into parts with high geometrical accuracy using SLM process with low laser power due to its high absorbance and low mass loss. The fabricated part quality depends on the laser volume energy density:increase of laser volume energy density input results in better mechanical properties of parts; however, excessive laser volume energy density input leads to high distortion of parts. Poor powder fluidity of the raw simulant is observed due to its complex particulate shape and a wide range of particle size distribution. The powder fluidity of the simulant is improved by optimizing its particle size range, resulting in a denser and more uniform powder bed, which can avoid defects within fabricated parts.
-
表 1 模拟月壤与A12样品的化学成分对比
Table 1. Comparison of composition of chemical elements in lunar regolith simulant and A12 returned sample
化学元素 质量分数/% 模拟月壤 A12月壤[11] O 36.48 46.31 Si 23.38 21.60 Fe 8.89 11.70 Ti 1.01 1.80 Al 2.78 3.40 Cr 0.12 Mn 0.15 Mg 7.26 5.60 Ca 12.22 7.60 Na 0.85 0.40 K 0.26 P 0.17 S 0.12 表 2 实验采用的工艺参数
Table 2. Process parameters used during experimental procedure
参数 数值 参考值[17] 激光输出功率P/W 40 10~50 激光工作波长λ/μm 1.07 1.07~1.09 激光光斑直径ϕ/μm 70 100~300 激光扫描速度v/(mm·s-1) 190 20~300 激光扫描间距HD/μm 140 210~300 铺粉层厚LT/μm 100 100~350 基板预热温度T/℃ 200 200 表 3 齿轮成形件几何尺寸的设计值与测量值
Table 3. Designed and measured geometric dimension for fabricated gear
参数 中心圆直径 齿顶圆直径 齿根圆直径 设计值/mm 44.19 39.00 26.00 测量平均值/mm 44.28 39.36 25.75 -
[1] 董鹏, 陈济轮.国外选区激光熔化成型技术在航空航天领域应用现状[J].航天制造技术, 2014(1):1-5. http://www.cnki.com.cn/Article/CJFDTotal-HTGY201401001.htmDONG P, CHEN J L.Current status of selective laser melting for aerospace applications abroad[J].Aerospace Manufacturing Technology, 2014(1):1-5(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-HTGY201401001.htm [2] SANDERS G B, LARSON W E, PICARD M.Development and demonstration of sustainable surface infrastructure for moon/mars exploration: NASA-20110016205[R].Washington, D.C.: NASA, 2011. [3] FATERI M, GEBHARDT A.Experimental investigation of selective laser melting of lunar regolith for in-situ applications[C]//ASME International Mechanical Engineering Congress and Exposition, 2013: V02AT02A008. [4] 李志杰, 果琳丽.月球原位资源利用技术研究[J].国际太空, 2017(3):44-50. http://d.old.wanfangdata.com.cn/Periodical/gjtk201703009LI Z J, GUO L L.Research on the technology of lunar in-situ resource utilization[J].Space International, 2017(3):44-50(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/gjtk201703009 [5] 王志浩, 刘宇明, 田东波, 等.月壤原位成型技术工程适用性浅析[J].航天器环境工程, 2018, 35(3):298-306. doi: 10.3969/j.issn.1673-1379.2018.03.017WANG Z H, LIU Y M, TIAN D B, et al.A brief analysis of the engineering applicability of lunar soil in-situ forming technology[J].Spacecraft Environment Engineering, 2018, 35(3):298-306(in Chinese). doi: 10.3969/j.issn.1673-1379.2018.03.017 [6] CECCANTI F, DINI E, KESTELIER X D, et al.3D printing technology for a moon outpost exploiting lunar soil[C]//61st International Astronautical Congress.Paris: International Astronautical Federation, 2010: 1-9. [7] BALLA V K, ROBERSON L B, OCONNOR G W, et al.First demonstration on direct laser fabrication of lunar regolith parts[J].Rapid Prototyping Journal, 2012, 18(6):451-457. doi: 10.1108/13552541211271992 [8] FATERI M, GEBHARDT A.Process parameters development of selective laser melting of lunar regolith for on-site manufacturing applications[J].International Journal of Applied Ceramic Technology, 2015, 12(1):46-52. doi: 10.1111/ijac.12326 [9] GOULAS A, BINNER J G P, HARRIS R A, et al.Assessing extraterrestrial regolith material simulants for in-situ resource utilization based 3D printing[J].Applied Materials Today, 2017, 6:54-61. doi: 10.1016/j.apmt.2016.11.004 [10] GERDESL N, FOKKEN G, LINKE S, et al.Selective laser melting for processing of regolith in support of a lunar base[J].Journal of Laser Applications, 2018, 30(3):032018. doi: 10.2351/1.5018576 [11] MCKAY D S, HEIKEN G H, VANIMAN D T, et al.The lunar regolith in the lunar sourcebook[M].Cambridge:Cambridge University Press, 1991:285-365. [12] 李雯.轮式月面探测器牵引通过性的细观力学研究[D].北京: 北京航空航天大学, 2008.LI W.Meso-mechanical study on trafficability for wheeled lunar rover vehicle[D].Beijing: Beihang University, 2008(in Chinese). [13] 欧阳自远.月球科学概论[M].北京:中国宇航出版社, 2005:12-19.OUYANG Z Y.Introduction to lunar science[M].Beijing:China Aerospace Press, 2005:12-19(in Chinese). [14] 贾阳, 申振荣, 党兆龙, 等.模拟月壤研究及其在月球探测工程中的应用[J].航天器环境工程.2014, 31(3):241-247. doi: 10.3969/j.issn.1673-1379.2014.03.002JIA Y, SHEN Z R, DANG Z L, et al.Lunar soil simulant and its engineering application in lunar exploration program[J].Spacecraft Environment Engineering, 2014, 31(3):241-247(in Chinese). doi: 10.3969/j.issn.1673-1379.2014.03.002 [15] HUANG Y, ZHAO R, LI W.Radiative characteristics of nonspherical particles based on a particle superposition model[J].Journal of Geophysical Research, 2013, 118(20):11762-11769. http://cn.bing.com/academic/profile?id=6b266e85fcc4827273fb0c9c03907d74&encoded=0&v=paper_preview&mkt=zh-cn [16] HEIKEN G, VANIMAN D, FRENCH B.Lunar sourcebook:A user's guide to the moon[M].Cambridge:Cambridge University Press, 1991. [17] GONG H, RAFI K, GU H, et al.Analysis of defect generation in Ti-6Al-4V parts made using powder bed fusion additive manufacturing processes[J].Additive Manufacturing, 2014, 1-4:87-98. doi: 10.1016/j.addma.2014.08.002 [18] GOULAS A, FRIEL R J.3D printing with moondust[J].Rapid Prototyping Journal, 2016, 22(6):864-870. doi: 10.1108/RPJ-02-2015-0022