-
摘要:
静电层析成像(EST)被动感应电荷的机理决定了其独立测量值数等于电极数目,远小于电容层析成像(ECT)等相对成熟的电学成像(ET)技术的测量值数,导致逆问题的欠定性更加严重。为此,对基于压缩感知理论的EST图像重建算法进行了研究。利用奇异值分解(SVD)处理灵敏度矩阵使其满足有限等距性质(RIP),采用
l 1范数正则化模型和原始对偶内点法(PDIPA)实现图像重建,并在迭代过程中针对荷电磨粒稀疏分布的特点,对图像向量中非零元素个数施加约束。仿真实验表明:该算法相对于基于"Circle of Appolonius"的反投影(BP)算法和Landweber迭代算法,明显改进了成像质量,对不同位置的单个电荷可准确重建;2个电荷距离不小于1 mm时可正确分辨电荷数目与位置;对10组随机分布的3个电荷模型进行测试,荷电磨粒数目监测的准确率约为80%。-
关键词:
- 静电层析成像(EST) /
- 油液监测 /
- 压缩感知 /
- 图像重建 /
- 正则化
Abstract:The passive induction mechanism of electrostatic tomography (EST) determines that the number of independent measurements is equal to the number of electrodes, which is much less than the number of independent measurements of relatively mature electrical tomography (ET) technologies such as elelctrical capacitance tomography (ECT), resulting in a more severe underdetermined inverse problem. In order to address this problem, compressed sensing-based EST image reconstruction algorithm is studied. The sensitivity matrix is processed by singular value decomposition (SVD) to satisfy the restricted isometry property (RIP), and thereafter the
l 1 norm regularization model and primal dual interior point algorithm (PDIPA) are utilized to reconstruct the image. Besides, constraint on the number of non-zero elements in the image vector is imposed in the iteration process according to the sparsity of debris distributed in oil. Simulation experiment demonstrates that compared to the "Circle of Appolonius" based back-projection (BP) algorithm and Landweber iteration algorithm, the aforementioned algorithm has obviously improved the imaging quality:accurate reconstruction can be obtained for single charge distributed at different positions; for two point charges whose distance is more than or equal to 1 mm, both the number and positions of the point charges can be correctly observed; for 10 groups of three randomly distributed point charge models, the accuracy rate of charged debris number monitoring is about 80%. -
-
[1] 陈志雄, 左洪福, 詹志娟, 等.滑油系统全流量在线磨粒静电监测技术研究[J].航空学报, 2012, 33(3):446-452. http://d.old.wanfangdata.com.cn/Periodical/hkxb201203008CHEN Z X, ZUO H F, ZHAN Z J, et al.Study of oil system oil-line debris electrostatic monitoring technology[J].Acta Aeronautica et Astronautica Sinica, 2012, 33(3):446-452(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb201203008 [2] 李绍成.基于静电感应和显微图像的油液磨粒监测技术研究[D].南京: 南京航空航天大学, 2009: 4-8. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1855041LI S C.Research on technologies of oil wear particle monitoring based on electrostatic induction and microscopical image[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2009: 4-8(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1855041 [3] TANG X, CHEN Z S, LI Y, et al.Compressive sensing-based electrostatic sensor array signal processing and exhausted abnormal debris detecting[J].Mechanical Systems and Signal Processing, 2018, 105:404-426. doi: 10.1016/j.ymssp.2017.12.022 [4] GREEN R G, RAHMAT M F, EVANS K, et al.Concentration profiles of dry powders in a gravity conveyor using an electrodynamic tomography system[J].Measurement Science and Technology, 1997, 8(2):192-197. doi: 10.1088/0957-0233/8/2/014 [5] MACHIDA M, SCARLETT B.Process tomography system by electrostatic charge carried by particles[J].IEEE Sensors Journal, 2005, 5(2):251-259. doi: 10.1109/JSEN.2005.843892 [6] RAHMAT M F, ISA M D, RAHIM R A, et al.Electrodynamics sensor for the image reconstruction process in an electrical charge tomography system[J].Sensors, 2009, 9(12):10291-10308. doi: 10.3390/s91210291 [7] THUKU I T, RAHMAT M F, WAHAB N A, et al. 2-D finite-element modeling of electrostatic sensor for tomography system[J].Sensor Review, 2013, 33(2):104-113. doi: 10.1108/02602281311299644 [8] 高鹤明.管内气固两相流的静电层析成像技术[D].南京: 东南大学, 2011: 56-61. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2187653GAO H M.Electrostatic tomography in gas/solid two-phase flow within pipe[D].Nanjing: Southeast University, 2011: 56-61(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2187653 [9] ZHOU B, ZHANG J Y, XU C L, et al.Image reconstruction in electrostatic tomography using a priori knowledge from ECT[J].Nuclear Engineering and Design, 2011, 241(6):1952-1958. doi: 10.1016/j.nucengdes.2010.09.012 [10] THUKU I T, RAHMAT M F A.Finite-element method modeling in 4 and 16 sensors electic-charge tomography systems for particles moving in pipeline[J].Flow Measurement and Instrumentation, 2014, 38:9-20. doi: 10.1016/j.flowmeasinst.2014.05.009 [11] QIAN x, yAN Y, WANG L, et al.An integrated multi-channel electrostatic sensing and digital imaging system for the on-line measurement of biomasscoal particles in fuel injection pipelines[J].Fuel, 2015, 151:2-10. doi: 10.1016/j.fuel.2014.11.013 [12] WANG S, LI J, XU C, et al.Local particle mean velocity measurement in pneumatic conveying pipelines using electrostatic sensor arrays[J].Particulate Science and Technology, 2015, 33(1):81-90. doi: 10.1080/02726351.2014.938380 [13] 曹宏庆.某型发动机滑油颗粒监测试验研究[D].南京: 南京航空航天大学, 2012: 11-12. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D281639CAO H Q.Research on experiments of aero-engine lubricating oil debris monitoring[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2012: 11-12(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D281639 [14] TANG X, CHEN Z S, LI Y, et al.Analysis of the dynamic sensitivity of hemisphere-shaped electrostatic sensors' circular array for chargedparticle monitoring[J].Sensors, 2016, 16(9):1403. doi: 10.3390/s16091403 [15] XUE Q, SUN B Y, CUI Z Q, et al. Online monitoring of oil film using electrical capacitance tomography and level set method[J].Review of Scientific Instruments, 2015, 86(8):085106. doi: 10.1063/1.4928060 [16] DING M L, YUE S H, LI J, et al.Second-order sensitivity coefficient based electrical tomography imaging[J].Chemical Engineering Science, 2019, 199:40-49. doi: 10.1016/j.ces.2019.01.020 [17] YU Y Y, HONG M J, LIU F, et al.Compressed sensing MRI using singular value decomposition based sparsity basis[C]//Annual International Conference of the IEEE Engineering in Medicine and Biology Society.Piscataway, NJ: IEEE Press, 2011: 5734-5737. [18] ZHANG Q B, LI X N, CHENG H, et al.SVD-based compressive sensing[J].AISS, 2013, 5(3):580-588. doi: 10.4156/aiss.vol5.issue3.68 [19] 张立峰, 刘昭麟, 田沛.基于压缩感知的电容层析成像图像重建算法[J].电子学报, 2017, 45(2):353-358. doi: 10.3969/j.issn.0372-2112.2017.02.013ZHANG L F, LIU Z L, TIAN P.Image reconstruction algorithm for electrical capacitance tomography based on compressed sensing[J].Acta Electronica Sinica, 2017, 45(2):353-358(in Chinese). doi: 10.3969/j.issn.0372-2112.2017.02.013 [20] WANG G Q, BAI Y Q. Primal-dual interior-point algorithm for convex quadratic semi-definite optimization[J].Nonlinear Analysis:Theory, Methods & Applications, 2009, 71(7-8):3389-3402. http://cn.bing.com/academic/profile?id=7d306414c4fd743460de9036bd9768f1&encoded=0&v=paper_preview&mkt=zh-cn [21] YANG A Y, ZHOU Z H, GANESH A, et al.Fast l1-minimization algorithms for robust face recognition[J].IEEE Transactions on Image Processing, 2013, 22(8):3234-3246. doi: 10.1109/TIP.2013.2262292 [22] KIM S J, KOH K, LUSTIG M, et al.An interior-point method for large-scale l1-regularized least squares[J].IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4):606-617. doi: 10.1109/JSTSP.2007.910971 [23] LI Y, YANG W. Image reconstruction by nonlinear Landweber iteration for complicated distributions[J]. Measurement Science and Technology, 2008, 19(9):094014. doi: 10.1088/0957-0233/19/9/094014