留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自研激光雷达三维点云配准技术

呼延嘉玥 徐立军 李小路

呼延嘉玥, 徐立军, 李小路等 . 自研激光雷达三维点云配准技术[J]. 北京航空航天大学学报, 2019, 45(10): 2099-2107. doi: 10.13700/j.bh.1001-5965.2019.0014
引用本文: 呼延嘉玥, 徐立军, 李小路等 . 自研激光雷达三维点云配准技术[J]. 北京航空航天大学学报, 2019, 45(10): 2099-2107. doi: 10.13700/j.bh.1001-5965.2019.0014
HUYAN Jiayue, XU Lijun, LI Xiaoluet al. Three-dimensional point cloud registration technique for self-designed LiDAR[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(10): 2099-2107. doi: 10.13700/j.bh.1001-5965.2019.0014(in Chinese)
Citation: HUYAN Jiayue, XU Lijun, LI Xiaoluet al. Three-dimensional point cloud registration technique for self-designed LiDAR[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(10): 2099-2107. doi: 10.13700/j.bh.1001-5965.2019.0014(in Chinese)

自研激光雷达三维点云配准技术

doi: 10.13700/j.bh.1001-5965.2019.0014
基金项目: 

国家重点研发计划 2018YFB0504500

国家自然科学基金 61671038

国家自然科学基金 61721091

详细信息
    作者简介:

    呼延嘉玥  女, 硕士研究生。主要研究方向:激光雷达及光信号处理

    李小路  女, 博士, 副教授, 硕士生导师。主要研究方向:激光雷达及光信号处理

    通讯作者:

    李小路, E-mail:xiaoluli@buaa.edu.cn

  • 中图分类号: TN958.98;V11

Three-dimensional point cloud registration technique for self-designed LiDAR

Funds: 

National Key R & D Program of China 2018YFB0504500

National Natural Science Foundation of China 61671038

National Natural Science Foundation of China 61721091

More Information
  • 摘要:

    为了实现激光雷达点云与图像重建点云的三维空间配准,基于自研三维扫描激光雷达系统,提出了新型的快速多尺度因子(FMSR)点云配准算法,研究了空间点云配准技术。该算法主要包括初始配准和精确配准2个步骤:初始配准使用基于尺度自适应关键点质量(ASKQ)的点云特征提取算法,提取关键点的特征匹配对,求解点云配准初始参数;精确配准利用K-邻近(KNN)算法全局搜索,提升计算效率,多次迭代得到2组点云之间的最优旋转矩阵、最优平移向量和最优尺度因子。仿真和实验结果表明,所提出的算法对空间目标(尺寸为20.30 m×7.85 m×26.56 m)实现空间点云配准,配准精度达到0.194 m,运行时间为16.207 s;与多尺度迭代最近点(S-ICP)算法相比,配准精度提高了0.131 m,运行时间提高了30%。所提出的空间点云配准技术可为场景重建和纹理匹配提供算法基础。

     

  • 图 1  三维点云数据获取系统

    Figure 1.  Three-dimensional point cloud data acquisition system

    图 2  点云配准流程图

    Figure 2.  Flowchart of point cloud registration

    图 3  多尺度小鸡模型的关键点提取结果

    Figure 3.  Key point extraction results of multi-scale chicken model

    图 4  多尺度小鸡模型的关键点匹配结果

    Figure 4.  Key point matching results of multi-scale chicken model

    图 5  多尺度小鸡模型精确配准结果

    Figure 5.  Fine registration results of multi-scale chicken model

    图 6  北京航空航天大学晨兴音乐厅建筑的实验现场

    Figure 6.  Building experimental site of Chenxing Concert Hall in Beihang University

    图 7  真实场景关键点提取结果

    Figure 7.  Key point extraction results of real scene

    图 8  真实场景的关键点匹配结果

    Figure 8.  Key point matching results of real scene

    图 9  真实场景的精确配准结果

    Figure 9.  Fine registration results of real scene

    表  1  FMSR算法精确配准结果

    Table  1.   Fine registration results of FMSR algorithm

    理论值μ 最优尺度因子S 最优旋转矩阵R 最优平移向量T 均方根误差Qrms/m 时间/s
    0.5 0.487 (-0.483, 0.010, -0.049) (2.659, -145.708, -25.783) 0.002 4.043
    1 0.977 (-0.483, 0.010, -0.049) (5.338, -291.396, -51.402) 0.002 2.601
    2 1.954 (-0.483, 0.010, -0.049) (10.679, -582.779, -102.807) 0.002 2.509
    10 9.768 (-0.483, 0.010, -0.049) (53.439, -2 913.906, -513.807) 0.002 2.489
    下载: 导出CSV

    表  2  S-ICP算法与FMSR算法对比

    Table  2.   Comparison of S-ICP and FMSR algorithms

    参数 S-ICP算法 FMSR算法
    最优尺度因子S 3.000 3.300
    最优旋转矩阵R (1.683, -0.035, 0.935) (1.561, -0.044, -2.214)
    最优平移向量T (-39.233, -29.415, 2.564) (17.394, 12.485, -0.957)
    均方根误差Qrms/m 0.325 0.194
    时间/s 23.212 16.207
    下载: 导出CSV
  • [1] 骆社周, 习晓环, 王成.激光雷达遥感在文化遗产保护中的应用[J].遥感技术与应用, 2014, 29(6):1054-1059. http://d.old.wanfangdata.com.cn/Periodical/ygjsyyy201406021

    LUO S Z, XI X H, WANG C.The application of LiDAR remote sensing of cultural heritage preservation[J].Remote Sensing Technology and Application, 2014, 29(6):1054-1059(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/ygjsyyy201406021
    [2] 赵一鸣, 李艳华, 商雅楠, 等.激光雷达的应用及发展趋势[J].遥测遥控, 2014, 35(5):4-22. doi: 10.3969/j.issn.2095-1000.2014.05.002

    ZHAO Y M, LI Y H, SHANG Y N, et al.Application and development direction of LiDAR[J].Journal of Telemetry, Tracking and Command, 2014, 35(5):4-22(in Chinese). doi: 10.3969/j.issn.2095-1000.2014.05.002
    [3] 曾齐红.机载激光雷达点云数据处理与建筑物三维重建[D].上海: 上海大学, 2009. http://cdmd.cnki.com.cn/Article/CDMD-11903-2009252698.htm

    ZENG Q H.Airborne LiDAR point cloud data processing and 3D building reconstruction[D]. Shanghai: Shanghai University, 2009(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-11903-2009252698.htm
    [4] YANG M D, CHAO C F, HUANG K S, et al.Image-based 3D scene reconstruction and exploration in augmented reality[J]. Automation in Construction, 2013, 33:48-60. doi: 10.1016/j.autcon.2012.09.017
    [5] WANG R.3D building modeling using images and LiDAR:A review[J].International Journal of Image and Data Fusion, 2013, 4(4):273-292. doi: 10.1080/19479832.2013.811124
    [6] ABAYOWA B O, YILMAZ A, HARDIE R C.Automatic registration of optical aerial imagery to a LiDAR point cloud for generation of city models[J].ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 106:68-81. doi: 10.1016/j.isprsjprs.2015.05.006
    [7] 王欣, 张明明, 于晓, 等.应用改进迭代最近点方法的点云数据配准[J].光学精密工程, 2012, 20(9):2068-2077. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201209026

    WANG X, ZHANG M M, YU X, et al.Point cloud registration based on improved iterative closest point method[J].Optics and Precision Engineering, 2012, 20(9):2068-2077(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201209026
    [8] BESL P J, MCKAY N D.A method for registration of 3-D shapes[J].Proceedings of SPIE-The International Society for Optical Engineering, 1992, 14(3):239-256. http://cn.bing.com/academic/profile?id=8cbd56d19370d28b22837979c6fb8d92&encoded=0&v=paper_preview&mkt=zh-cn
    [9] YING S, PENG J, DU S, et al.A scale stretch method based on ICP for 3D data registration[J].IEEE Transactions on Automation Science and Engineering, 2009, 6(3):559-565. doi: 10.1109/TASE.2009.2021337
    [10] CHEN Y, MEDIONI G.Object modelling by registration of multiple range images[J].Image and Vision Computing, 1992, 10(3):145-155. doi: 10.1016/0262-8856(92)90066-C
    [11] RUSINKIEWICZ S, LEVOY M.Efficient variants of the ICP algorithm[C]//Proceedings 3rd International Conference on 3-D Digital Imaging and Modeling.Piscataway, NJ: IEEE Press, 2001: 145-152.
    [12] 戴静兰, 陈志杨, 叶修梓.ICP算法在点云配准中的应用[J].中国图象图形学报, 2007, 12(3):517-521. doi: 10.3969/j.issn.1006-8961.2007.03.023

    DAI J L, CHEN Z Y, YE X Z.The application of ICP algorithm in point cloud alignment[J].Journal of Image and Graphics, 2007, 12(3):517-521(in Chinese). doi: 10.3969/j.issn.1006-8961.2007.03.023
    [13] 邹际祥.基于KD-tree加速的点云数据配准技术研究[D].合肥: 安徽大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10357-1013258892.htm

    ZOU J X.The research of point cloud data registration technique based on KD-tree acceleration[D].Hefei: Anhui University, 2013(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10357-1013258892.htm
    [14] MIAN A, BENNAMOUN M, OWENS R.On the repeatability and quality of keypoints for local feature-based 3D object retrieval from cluttered scenes[J].International Journal of Computer Vision, 2010, 89(2-3):348-361. doi: 10.1007/s11263-009-0296-z
    [15] LI X L, LI Y Y, XU L J.Terrestrial laser scanner autonomous self-calibration with no prior knowledge of point-clouds[J].IEEE Sensors Journal, 2018, 18(22):9277-9285. doi: 10.1109/JSEN.2018.2869559
    [16] LI X L, LI Y Y, XIE X H, et al.Lab-built terrestrial laser scanner self-calibration using mounting angle error correction[J].Optics Express, 2018, 26(11):14444-14460. doi: 10.1364/OE.26.014444
    [17] LI X L, YANG B W, XIE X H, et al.Influence of waveform characteristics on LiDAR ranging accuracy and precision[J]. Sensors, 2018, 18(4):1156-1172. doi: 10.3390/s18041156
    [18] LI X L, WANG H M, YANG B W, et al.Influence of time-pickoff circuit parameters on LiDAR range precision[J]. Sensors, 2017, 17(10):2369-2389. doi: 10.3390/s17102369
    [19] XU L J, FENG J, LI X L, et al.Automatic registration method for TLS LiDAR data and image-based reconstructed data[J].IEEE Geoscience and Remote Sensing Letters, 2018, 16(3):482-486. http://cn.bing.com/academic/profile?id=a1e664cbbe722c97e4310bcc58d0d757&encoded=0&v=paper_preview&mkt=zh-cn
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  1183
  • HTML全文浏览量:  163
  • PDF下载量:  529
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-16
  • 录用日期:  2019-03-29
  • 网络出版日期:  2019-10-20

目录

    /

    返回文章
    返回
    常见问答