Detection and localization of concealed forbidden objects on human body based on complementary advantages of PMMWI and Ⅵ
-
摘要:
根据公共场所人体安检的性能要求和技术需求,将被动毫米波成像(PMMWI)的可透视成像性能优势与可见光成像(Ⅵ)的细节高分辨性能优势相结合,提出一种基于PMMWI与Ⅵ优势互补的人体隐蔽违禁物检测与定位算法。首先,提出一种基于低层特征融合的改进U-Net以增强深度神经网络(DNN)对PMMWI中弱小目标轮廓的敏感度,提高PMMWI中人体轮廓和隐蔽违禁物的分割精度,并同时实现Ⅵ中人体轮廓的像素级分割;然后,在PMMWI和Ⅵ中的人体轮廓分割基础上,通过基于人体轮廓的尺度变换与滑动适配实现PMMWI人体轮廓和Ⅵ人体轮廓的良好配准,根据配准结果实现单帧图像中人体隐蔽违禁物的高效检测;最后,通过序列图像检测结果的对比融合与优化决策给出隐蔽违禁物的定位结果。一系列综合实验与对比分析结果,验证了提出的人体隐蔽违禁物检测与定位算法的性能优势。
-
关键词:
- 毫米波安检 /
- 被动毫米波成像(PMMWI) /
- 人体轮廓分割 /
- 深度学习 /
- 深度神经网络(DNN) /
- 隐蔽违禁物检测与定位
Abstract:According to the performance requirements and technology demands of human security check in public place, combining the performance advantages of perspective imaging of passive millimeter wave imaging (PMMWI) and high discriminability in image details of visible imaging (Ⅵ), an approach for detection and localization of concealed forbidden objects on human body is presented in this paper based on the complementary advantages of PMMWI and Ⅵ. Firstly, an improved U-Net based on feature fusion in low layers is presented to enhance the sensitivity of deep neural networks (DNN) to the contour of dim small targets, and improve the accuracy of segmentation of human contours and concealed forbidden objects. Meanwhile, the pixel-level segmentation of human contours in Ⅵ is also implemented. Then, the contours of human body in PMMWI are registered with some corresponding ones in Ⅵ by scale transform and sliding fit, so the concealed forbidden objects on human body can be detected from a single frame with a high precision. Finally, the concealed forbidden objects are localized by contrasting fusion and optimizing decision according to detection results with sequence images. A series of comprehensive experiments and comparative analysis results validate the good performance of the proposed detection and localization algorithm of concealed forbidden objects on human body towards security check of public places.
-
表 1 人体隐蔽违禁物检测IoU对比
Table 1. Comparison of IoU for detection of concealed forbidden objects on human body
检测方式 a b c d e 远距离检测 0.642 0.859 0.782 0.490 0.648 近距离检测 0.786 0.810 0.362 0.584 0.853 -
[1] 王任肩, 王宇光, 陈志福, 等.大型活动中的安检排爆工作及技术保障研究[J].警察技术, 2018(5):19-22. doi: 10.3969/j.issn.1009-9875.2018.05.004WANG R J, WANG Y G, CHEN Z F, et al.Research on exploder clearing work and technical support in security inspection of large activities[J].Police Technology, 2018(5):19-22(in Chinese). doi: 10.3969/j.issn.1009-9875.2018.05.004 [2] 费鹏, 方维海, 温鑫, 等.用于人员安检的主动毫米波成像技术现状与展望[J].微波学报, 2015, 31(2):91-96. http://d.old.wanfangdata.com.cn/Periodical/wbxb201502020FEI P, FANG W H, WEN X, et al.State of the art and future prospect of the active millimeter wave imaging technique for personnel screening[J].Journal of Microwaves, 2015, 31(2):91-96(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/wbxb201502020 [3] GROSSMAN E N, MILLER A J.Active millimeter-wave imaging for concealed weapons detection[C]//Proceedings of Conference on Passive Millimeter-Wave Imaging Technology Ⅵ and Radar International Society for Optics and Photonics.Bellingham: SPIE, 2003, 5077: 62-70. [4] ANDREWS D A, HARMER S W, BOWRING N J, et al.Active millimeter wave sensor for standoff concealed threat detection[J].IEEE Sensors Journal, 2013, 13(12):4948-4954. doi: 10.1109/JSEN.2013.2273487 [5] DU K, ZHANG L, CHEN W, et al.Concealed objects detection based on FWT in active millimeter-wave images[C]//Proceedings of 7th International Conference on Electronics and Information Engineering.Bellingham: SPIE, 2017, 10322: 103221O. [6] REN S, HE K, GIRSHICK R, et al.Faster R-CNN:Towards real-time object detection with region proposal networks[J].IEEE Transaction on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149. doi: 10.1109/TPAMI.2016.2577031 [7] 骆尚, 吴晓峰, 杨明辉, 等.基于卷积神经网络的毫米波图像人体隐匿物检测[J].复旦学报(自然科学版), 2018, 57(4):442-452. http://d.old.wanfangdata.com.cn/Periodical/fdxb201804005LUO S, WU X F, YANG M H, et al.Convolutional-neural-network-based human concealed object detection for millimeter wave images[J].Journal of Fudan University(Natural Science), 2018, 57(4):442-452(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/fdxb201804005 [8] SINCLAIR G N, ANDERTON R N, APPLEBY R.Passive millimeter-wave concealed weapon detection[C]//Proceedings of Enabling Technologies for Law Enforcement and Security.Bellingham: SPIE, 2001, 4232: 142-152. [9] YEOM S, LEE D, SON J, et al.Real-time outdoor concealed-object detection with passive millimeter wave imaging[J].Optics Express, 2011, 19(3):2530-2536. doi: 10.1364/OE.19.002530 [10] YEOM S, LEE D, JANG Y, et al.Real-time concealed-object detection and recognition with passive millimeter wave imaging[J].Optics Express, 2012, 20(9):9371-9381. doi: 10.1364/OE.20.009371 [11] 周健, 叶金晶, 孙谦晨, 等.主动毫米波成像性别识别算法研究[J].红外, 2018, 39(9):34-40. doi: 10.3969/j.issn.1672-8785.2018.09.006ZHOU J, YE J J, SUN Q C, et al.Study of a gender identification algorithm for active millimeter-wave imaging[J].Infrared, 2018, 39(9):34-40(in Chinese). doi: 10.3969/j.issn.1672-8785.2018.09.006 [12] SHELHAMER E, LONG J, DARRELL T.Fully convolutional networks for semantic segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4):640-651. doi: 10.1109/TPAMI.2016.2572683 [13] BADRINARAYANAN V, KENDALL A, CIPOLLA R.SegNet:A deep convolutional encoder-decoder architecture for image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12):2481-2495. doi: 10.1109/TPAMI.2016.2644615 [14] RONNEBERGER O, FISCHER P, BROX T.U-Net: Convolutional networks for biomedical image segmentation[C]//Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention.Berlin: Springer, 2015: 234-241. [15] 桑伟, 岳胜利.毫米波成像技术在人体安全检查领域的应用[J].中国安防, 2013(4):83-87. doi: 10.3969/j.issn.1673-7873.2013.04.018SANG W, YUE S L.Application of millimeter wave imaging technology on the area of human body security inspection[J].China Security & Protection, 2013(4):83-87(in Chinese). doi: 10.3969/j.issn.1673-7873.2013.04.018 [16] IGLOVIKOV V, SHVETS A.TernausNet: U-Net with VGG11 encoder pre-trained on ImageNet for image segmentation[D].(2018-01-17)[2018-12-20].https://arxiv.org/abs/1801.05746. https://arxiv.org/abs/1801.05746 [17] LIN M, CHEN Q, YAN S C.Network in network[D].(2014-03-04)[2018-12-20].https://arxiv.org/abs/1312.4400. [18] SZEGEDY C, LIU W, JIA Y, et al.Going deeper with convolutions[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Piscataway, NJ: IEEE Press, 2015: 1-9. [19] SZEGEDY C, VANHOUCKE V, IOFFE S, et al.Rethinking the inception architecture for computer vision[D].(2015-12-11)[2018-12-20].https://arxiv.org/abs/1512.00567v2. [20] HE K M, ZHANG X Y, REN S Q, et al.Deep residual learning for image recognition[D].(2015-12-10)[2018-12-20].https://arxiv.org//abs/1512.03385. [21] XIE S, GIRSHICK R, DOLLÁR P, et al.Aggregated residual transformations for deep neural networks[D].(2017-04-11)[2018-12-20].https://arxiv.org/abs/1611.05431. [22] KINGMA D P, BA J L.Adam: A method for stochastic optimization[D].(2017-01-30)[2018-12-20].https://arxiv.org/abs/1412.6980. [23] ZEILER M D, FERGUS R.Visualizing and understanding convolutional networks[C]//Proceedings of European Conference on Computer Vision.Berlin: Springer, 2014: 818-833.