留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

阵列射流冲击复合不同肋化表面的沸腾特性

张添 张畅 谢荣建 董德平

张添, 张畅, 谢荣建, 等 . 阵列射流冲击复合不同肋化表面的沸腾特性[J]. 北京航空航天大学学报, 2019, 45(10): 2035-2043. doi: 10.13700/j.bh.1001-5965.2019.0028
引用本文: 张添, 张畅, 谢荣建, 等 . 阵列射流冲击复合不同肋化表面的沸腾特性[J]. 北京航空航天大学学报, 2019, 45(10): 2035-2043. doi: 10.13700/j.bh.1001-5965.2019.0028
ZHANG Tian, ZHANG Chang, XIE Rongjian, et al. Boiling characteristics of array jet impingement with various pin-finned surfaces[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(10): 2035-2043. doi: 10.13700/j.bh.1001-5965.2019.0028(in Chinese)
Citation: ZHANG Tian, ZHANG Chang, XIE Rongjian, et al. Boiling characteristics of array jet impingement with various pin-finned surfaces[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(10): 2035-2043. doi: 10.13700/j.bh.1001-5965.2019.0028(in Chinese)

阵列射流冲击复合不同肋化表面的沸腾特性

doi: 10.13700/j.bh.1001-5965.2019.0028
详细信息
    作者简介:

    张添  女, 博士研究生。主要研究方向:用于高热流密度散热的先进热管理技术

    董德平  男, 博士, 研究员, 博士生导师。主要研究方向:空间载荷先进热管理技术

    通讯作者:

    董德平, E-mail: dongdeping@mail.sitp.ac.cn

  • 中图分类号: TK124

Boiling characteristics of array jet impingement with various pin-finned surfaces

More Information
  • 摘要:

    阵列射流冲击冷却技术可以有效地解决高热流密度器件的散热问题,为了验证受冲击表面强化传热结构对优化两相射流冷却性能的有效性,结合高速显微摄像手段,研究了不同肋化表面结构形态对受限式阵列射流冷却的流动、传热特性的影响。设计了2种含不同肋化表面形态:光滑切割针肋(0.6 mm×0.6 mm×1.0 mm)、外覆多孔烧结层的粗糙针肋(粒径为73~53 μm)。实验使用无水乙醇为工质,以光滑表面的射流冷却热沉为对照组,入口温度均为20℃,在固定工质流量7.5 mL/s下,随着加热热流密度由5 W/cm2增加至100 W/cm2时,热沉的换热系数均持续上升但增幅逐渐减小,未明显观察到沸腾相变的发生。对固定热流密度82.6 W/cm2、80.5 W/cm2改变工质流量(射流雷诺数)的实验工况,当工质流量由7.5 mL/s逐渐降低至1.0 mL/s时,可以非常明显地观测到射流腔内部工质由分层湍流逐步进入泡状流、弹状流及环状流,其分别对应起始沸腾区、核态沸腾区及膜态沸腾区。

     

  • 图 1  可视化复合阵列射流热沉结构示意图

    Figure 1.  Schematic diagram of visualized hybrid array jet heat sink structure

    图 2  肋化射流表面的基板尺寸示意图

    Figure 2.  Schematic diagram of baseplate dimension of pin-fined jet surface

    图 3  粗糙肋化表面实物图及SEM照片

    Figure 3.  Photographs and SEM images of porous coated pin-finned surface

    图 4  性能测试系统示意图

    Figure 4.  Schematic diagram of performance test system

    图 5  壁面过热度随热流密度的变化

    Figure 5.  Influence of heat flux on wall surface degree of superheat

    图 6  换热系数随热流密度的变化

    Figure 6.  Influence of heat flux on heat transfer coefficient

    图 7  换热系数随射流雷诺数的变化

    Figure 7.  Influence of jet Reynold number on heat transfer coefficient

    图 8  压力损失随射流雷诺数的变化

    Figure 8.  Influence of jet Reynold number on pressure loss

    图 9  Φ=82.6 W/cm2、流量qv减小的稳态工况气泡分布

    Figure 9.  Images of bubble distribution with decreasing flux qv and Φ=82.6 W/cm2 at steady-state conditions

    图 10  Φ=82.6 W/cm2qv=1.1 mL/s瞬态工况气泡分布

    Figure 10.  Images of bubble distributions with Φ=82.6 W/cm2 and qv=1.1 mL/s at transient conditions

    图 11  Φ=80.5 W/cm2、流量qv减小的稳态工况气泡分布

    Figure 11.  Images of bubble distribution with decreasing flux qv and Φ=80.5 W/cm2 at steady-state conditions

    图 12  Φ=80.5 W/cm2qv=5.8 mL/s瞬态工况气泡分布

    Figure 12.  Images of transient bubble distribution when Φ=80.5 W/cm2 and qv=5.8 mL/s at transient conditions

    图 13  Φ=80.5 W/cm2qv=1.5 mL/s瞬态工况气泡分布

    Figure 13.  Images of transient bubble distribution with Φ=80.5 W/cm2 and qv=1.5 mL/s at transient conditions

    表  1  阵列射流结构参数

    Table  1.   Array jet structure parameters

    mm
    参数 射流孔径 孔间距 孔板厚度 射流距离
    数值 0.5 6 3 3
    注:射流距离为射流孔板下表面至基板上表面(肋底部)。
    下载: 导出CSV

    表  2  实验不确定度

    Table  2.   Uncertainties of experiment

    %
    误差 参数 数值
    直接相对误差 T ±2
    TinTout ±0.75
    xDjet ±2
    qmqv ±0.2
    ρ ±0.6
    P ±0.25
    间接相对误差 Φ ±0.13
    Tw ±1
    ΔTm ±0.96
    h ±2.26
    Ujet ±0.2
    Re ±2.2
    ΔP ±0.25
    下载: 导出CSV
  • [1] RIOFRIO M C, CANEY N, GRUSS J A.State the art of efficient pumped two-phase flow cooling technologies[J].Applied Thermal Engineering, 2016, 104:333-343. doi: 10.1016/j.applthermaleng.2016.05.061
    [2] 刘亮堂, 王安良.星载电子器件用空气射流散热特性[J].北京航空航天大学学报, 2015, 41(8):1553-1559. https://bhxb.buaa.edu.cn/CN/abstract/abstract13370.shtml

    LIU L T, WANG A L.Characteristic of air jet impingement cooling performance for electronic equipment of satellite[J].Journal of Beijing University of Aeronautics and astronautics, 2015, 41(8):1553-1559(in Chinese). https://bhxb.buaa.edu.cn/CN/abstract/abstract13370.shtml
    [3] MIRA-HERNANDEZ C, CLARK M D, WEIBEL J A, et al.Development and validation of a semi-empirical model for two-phase heat transfer from arrays of impinging jets[J].International Journal of Heat and Mass Transfer, 2018, 124:782-793. doi: 10.1016/j.ijheatmasstransfer.2018.03.047
    [4] 张添, 王仕越, 芮骥才, 等.不同工质下带蒸汽腔的Ω形微通道热沉特性[J].化工进展, 2018, 37(8):2954-2961. http://d.old.wanfangdata.com.cn/Periodical/hgjz201808011

    ZHANG T, WANG S Y, RUI J C, et al.Characteristic of an Ω-shape microchannel heatsink with different working fluid[J].Chemical Industry and Engineering Progress, 2018, 37(8):2954-2961(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hgjz201808011
    [5] 孟恒辉, 谭沧海, 耿利寅, 等.激光通信终端主体热设计与热分析[J].北京航空航天大学学报, 2013, 39(9):1222-1227. https://bhxb.buaa.edu.cn/CN/abstract/abstract12728.shtml

    MENG H H, TAN C H, GENG L Y, et al.Thermal control design and analysis for laser communication terminal[J].Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(9):1222-1227(in Chinese). https://bhxb.buaa.edu.cn/CN/abstract/abstract12728.shtml
    [6] 孙少鹏.高热流密度电子元件喷雾相变冷却系统的研究[D].重庆: 重庆大学, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10611-2010216083.htm

    SUN S P.Research on spray cooling system for electronics with high heat flux[D].Chongqing: Chongqing University, 2010(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10611-2010216083.htm
    [7] 万忠民, 刘靖, 陈敏, 等.高热流密度散热的多孔微热沉流动与传热实验研究[J].中国电机工程学报, 2011, 31(29):74-78. http://d.old.wanfangdata.com.cn/Periodical/zgdjgcxb201129012

    WAN Z M, LIU J, CHEN M, et al.Experimental investigation of flow and heat transfer in a porous micro heat sink for dissipating high heat flux[J].Proceedings of the CSEE, 2011, 31(29):74-78(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/zgdjgcxb201129012
    [8] GUO Z Y.Mechanism and control of convective heat transfer-Coordination of velocity and heat flow fields[J].Chinese Science Bulletin, 2001, 46(7):597-600. doi: 10.1360/csb2001-46-7-597
    [9] 杨世铭, 陶文铨.传热学[M].4版.北京:高等教育出版社, 2006.

    YANG S M, TAO W Q.Heat transfer[M].4th ed.Beijing:Higher Education Press, 2006(in Chinese).
    [10] CHANG H S, KYUNG M K, SUNG H L, et al.Influences of nozzle-plate spacing on boiling heat transfer of confined planar dielectric liquid impinging jet[J].International Journal of Heat and Mass Transfer, 2009, 52(23-24):5293-5301. doi: 10.1016/j.ijheatmasstransfer.2009.08.002
    [11] SUNG M K, MUDAWAR I.Effects of jet pattern on single-phase cooling performance of hybrid micro-channel micro-circular-jet-impingement thermal management scheme[J].International Journal of Heat and Mass Transfer, 2009, 52(13-14):3364-3372. doi: 10.1016/j.ijheatmasstransfer.2008.06.046
    [12] SUNG M K, MUDAWAR I.CHF determination for high-heat flux phase change cooling system incorporating both micro-channel flow and jet impingement[J].International Journal of Heat and Mass Transfer, 2009, 52(3-4):610-619. doi: 10.1016/j.ijheatmasstransfer.2008.07.035
    [13] JOSHI S N, DEDE E M.Two-phase jet impingement cooling for high heat flux wide band-gap devices using multi-scale porous surfaces[J].Applied Thermal Engineering, 2017, 110:10-17. doi: 10.1016/j.applthermaleng.2016.08.146
    [14] 崔付龙, 詹可敬, 洪芳军.射流-针肋微通道混合型蒸发器换热特性的实验研究[J].制冷技术, 2017, 37(4):1-6. doi: 10.3969/j.issn.2095-4468.2017.04.101

    CUI F L, ZHAN K J, HONG F J.Experimental study on heat transfer performance of jet impingement-pin fin microchannel hybrid evaporator[J].Chinese Journal of Refrigeration Tecnolgy, 2017, 37(4):1-6(in Chinese). doi: 10.3969/j.issn.2095-4468.2017.04.101
    [15] 刘明艳.微小通道与射流相结合的高热流密度热沉结构的数值模拟[D].北京: 清华大学, 2010. http://cdmd.cnki.com.cn/article/cdmd-10003-1011280903.htm

    LIU M Y.Numerical simulation of heat sink with combined micro channels and jet arrays for high heat flux density[D].Beijing: Tsinghua University, 2010(in Chinese). http://cdmd.cnki.com.cn/article/cdmd-10003-1011280903.htm
    [16] 马朝, 严超, 曹学伟, 等.阵列空气射流传热均匀性问题的数值研究[J].工程热物理学报, 2016, 37(11):2378-2385. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcrwlxb201611018

    MA C, YAN C, CAO X W, et al.Numerical study on array air jet heat transfer uniformity[J].Journal of Engineering Thermophysics, 2016, 37(11):2378-2385(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcrwlxb201611018
    [17] RUANDER C, VIOND N.Heat transfer characteristics of submerged jet impingement boiling of saturated FC-72[J].International Journal of Heat and Mass Transfer, 2012, 55(15-16):4217-4231. doi: 10.1016/j.ijheatmasstransfer.2012.03.063
    [18] SHAILESH N J, DEDE E M.Two-phase jet impingement cooling for high heat flux wide band-gap devices using multi-scale porous surfaces[J].Applied Thermal Engineering, 2017, 110:10-17. doi: 10.1016/j.applthermaleng.2016.08.146
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  839
  • HTML全文浏览量:  107
  • PDF下载量:  462
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-22
  • 录用日期:  2019-02-16
  • 网络出版日期:  2019-10-20

目录

    /

    返回文章
    返回
    常见问答