-
摘要:
阵列射流冲击冷却技术可以有效地解决高热流密度器件的散热问题,为了验证受冲击表面强化传热结构对优化两相射流冷却性能的有效性,结合高速显微摄像手段,研究了不同肋化表面结构形态对受限式阵列射流冷却的流动、传热特性的影响。设计了2种含不同肋化表面形态:光滑切割针肋(0.6 mm×0.6 mm×1.0 mm)、外覆多孔烧结层的粗糙针肋(粒径为73~53 μm)。实验使用无水乙醇为工质,以光滑表面的射流冷却热沉为对照组,入口温度均为20℃,在固定工质流量7.5 mL/s下,随着加热热流密度由5 W/cm2增加至100 W/cm2时,热沉的换热系数均持续上升但增幅逐渐减小,未明显观察到沸腾相变的发生。对固定热流密度82.6 W/cm2、80.5 W/cm2改变工质流量(射流雷诺数)的实验工况,当工质流量由7.5 mL/s逐渐降低至1.0 mL/s时,可以非常明显地观测到射流腔内部工质由分层湍流逐步进入泡状流、弹状流及环状流,其分别对应起始沸腾区、核态沸腾区及膜态沸腾区。
Abstract:Array jet impingement cooling technology can effectively solve the heat dissipation problem of high heat flux devices. In order to verify the effectiveness of heat transfer enhancement on the impacted surface for optimizing cooling performance of two-phase jet cooling, this article studied the effects of different pin-finned surface structures on the flow and heat transfer characteristics of confined array jet cooling combined with high-speed microscopic imaging methods. Two kinds of pin-finned surface morphology were designed:smooth cutting needle rib (0.6 mm×0.6 mm×1.0 mm) and rough needle rib with porous sintered layer (particle size 73~53 μm). In the experiment, jet cooling heat sink with smooth surface was used as the control group, anhydrous ethanol was used as the working medium, and all the inlet temperatures were the same (20℃). When the flow rate is 7.5 mL/s and the heating heat flux increases from 5 W/cm2 to 100 W/cm2, the heat transfer coefficient of the heat sink continues to increase but the increase rate gradually decreases, and no phase change is observed. Under the experimental conditions of changing the fluid flow rate (fluid Reynold number) with fixed heat flux 82.6 W/cm2, 80.5 W/cm2, when the flow rate decreases from 7.5 mL/s to 1.0mL/s, it can be clearly observed that the working fluid in the jet cavity gradually enters bubble flow, slug flow and annular flow from stratified turbulence flow, which correspond to the initial boiling zone, nuclear boiling zone and membrane boiling zone, respectively.
-
Key words:
- high heat flux /
- confined array jet /
- porous media /
- boiling enhancement /
- visualization
-
表 1 阵列射流结构参数
Table 1. Array jet structure parameters
mm 参数 射流孔径 孔间距 孔板厚度 射流距离 数值 0.5 6 3 3 注:射流距离为射流孔板下表面至基板上表面(肋底部)。 表 2 实验不确定度
Table 2. Uncertainties of experiment
% 误差 参数 数值 直接相对误差 T ±2 Tin、Tout ±0.75 x、Djet ±2 qm、qv ±0.2 ρ ±0.6 P ±0.25 间接相对误差 Φ ±0.13 Tw ±1 ΔTm ±0.96 h ±2.26 Ujet ±0.2 Re ±2.2 ΔP ±0.25 -
[1] RIOFRIO M C, CANEY N, GRUSS J A.State the art of efficient pumped two-phase flow cooling technologies[J].Applied Thermal Engineering, 2016, 104:333-343. doi: 10.1016/j.applthermaleng.2016.05.061 [2] 刘亮堂, 王安良.星载电子器件用空气射流散热特性[J].北京航空航天大学学报, 2015, 41(8):1553-1559. https://bhxb.buaa.edu.cn/CN/abstract/abstract13370.shtmlLIU L T, WANG A L.Characteristic of air jet impingement cooling performance for electronic equipment of satellite[J].Journal of Beijing University of Aeronautics and astronautics, 2015, 41(8):1553-1559(in Chinese). https://bhxb.buaa.edu.cn/CN/abstract/abstract13370.shtml [3] MIRA-HERNANDEZ C, CLARK M D, WEIBEL J A, et al.Development and validation of a semi-empirical model for two-phase heat transfer from arrays of impinging jets[J].International Journal of Heat and Mass Transfer, 2018, 124:782-793. doi: 10.1016/j.ijheatmasstransfer.2018.03.047 [4] 张添, 王仕越, 芮骥才, 等.不同工质下带蒸汽腔的Ω形微通道热沉特性[J].化工进展, 2018, 37(8):2954-2961. http://d.old.wanfangdata.com.cn/Periodical/hgjz201808011ZHANG T, WANG S Y, RUI J C, et al.Characteristic of an Ω-shape microchannel heatsink with different working fluid[J].Chemical Industry and Engineering Progress, 2018, 37(8):2954-2961(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hgjz201808011 [5] 孟恒辉, 谭沧海, 耿利寅, 等.激光通信终端主体热设计与热分析[J].北京航空航天大学学报, 2013, 39(9):1222-1227. https://bhxb.buaa.edu.cn/CN/abstract/abstract12728.shtmlMENG H H, TAN C H, GENG L Y, et al.Thermal control design and analysis for laser communication terminal[J].Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(9):1222-1227(in Chinese). https://bhxb.buaa.edu.cn/CN/abstract/abstract12728.shtml [6] 孙少鹏.高热流密度电子元件喷雾相变冷却系统的研究[D].重庆: 重庆大学, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10611-2010216083.htmSUN S P.Research on spray cooling system for electronics with high heat flux[D].Chongqing: Chongqing University, 2010(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10611-2010216083.htm [7] 万忠民, 刘靖, 陈敏, 等.高热流密度散热的多孔微热沉流动与传热实验研究[J].中国电机工程学报, 2011, 31(29):74-78. http://d.old.wanfangdata.com.cn/Periodical/zgdjgcxb201129012WAN Z M, LIU J, CHEN M, et al.Experimental investigation of flow and heat transfer in a porous micro heat sink for dissipating high heat flux[J].Proceedings of the CSEE, 2011, 31(29):74-78(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/zgdjgcxb201129012 [8] GUO Z Y.Mechanism and control of convective heat transfer-Coordination of velocity and heat flow fields[J].Chinese Science Bulletin, 2001, 46(7):597-600. doi: 10.1360/csb2001-46-7-597 [9] 杨世铭, 陶文铨.传热学[M].4版.北京:高等教育出版社, 2006.YANG S M, TAO W Q.Heat transfer[M].4th ed.Beijing:Higher Education Press, 2006(in Chinese). [10] CHANG H S, KYUNG M K, SUNG H L, et al.Influences of nozzle-plate spacing on boiling heat transfer of confined planar dielectric liquid impinging jet[J].International Journal of Heat and Mass Transfer, 2009, 52(23-24):5293-5301. doi: 10.1016/j.ijheatmasstransfer.2009.08.002 [11] SUNG M K, MUDAWAR I.Effects of jet pattern on single-phase cooling performance of hybrid micro-channel micro-circular-jet-impingement thermal management scheme[J].International Journal of Heat and Mass Transfer, 2009, 52(13-14):3364-3372. doi: 10.1016/j.ijheatmasstransfer.2008.06.046 [12] SUNG M K, MUDAWAR I.CHF determination for high-heat flux phase change cooling system incorporating both micro-channel flow and jet impingement[J].International Journal of Heat and Mass Transfer, 2009, 52(3-4):610-619. doi: 10.1016/j.ijheatmasstransfer.2008.07.035 [13] JOSHI S N, DEDE E M.Two-phase jet impingement cooling for high heat flux wide band-gap devices using multi-scale porous surfaces[J].Applied Thermal Engineering, 2017, 110:10-17. doi: 10.1016/j.applthermaleng.2016.08.146 [14] 崔付龙, 詹可敬, 洪芳军.射流-针肋微通道混合型蒸发器换热特性的实验研究[J].制冷技术, 2017, 37(4):1-6. doi: 10.3969/j.issn.2095-4468.2017.04.101CUI F L, ZHAN K J, HONG F J.Experimental study on heat transfer performance of jet impingement-pin fin microchannel hybrid evaporator[J].Chinese Journal of Refrigeration Tecnolgy, 2017, 37(4):1-6(in Chinese). doi: 10.3969/j.issn.2095-4468.2017.04.101 [15] 刘明艳.微小通道与射流相结合的高热流密度热沉结构的数值模拟[D].北京: 清华大学, 2010. http://cdmd.cnki.com.cn/article/cdmd-10003-1011280903.htmLIU M Y.Numerical simulation of heat sink with combined micro channels and jet arrays for high heat flux density[D].Beijing: Tsinghua University, 2010(in Chinese). http://cdmd.cnki.com.cn/article/cdmd-10003-1011280903.htm [16] 马朝, 严超, 曹学伟, 等.阵列空气射流传热均匀性问题的数值研究[J].工程热物理学报, 2016, 37(11):2378-2385. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcrwlxb201611018MA C, YAN C, CAO X W, et al.Numerical study on array air jet heat transfer uniformity[J].Journal of Engineering Thermophysics, 2016, 37(11):2378-2385(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcrwlxb201611018 [17] RUANDER C, VIOND N.Heat transfer characteristics of submerged jet impingement boiling of saturated FC-72[J].International Journal of Heat and Mass Transfer, 2012, 55(15-16):4217-4231. doi: 10.1016/j.ijheatmasstransfer.2012.03.063 [18] SHAILESH N J, DEDE E M.Two-phase jet impingement cooling for high heat flux wide band-gap devices using multi-scale porous surfaces[J].Applied Thermal Engineering, 2017, 110:10-17. doi: 10.1016/j.applthermaleng.2016.08.146