留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超低信噪比调频连续波引信信号小周期态Duffing振子检测

朱志强 侯健 闫晓鹏 栗苹 郝新红

朱志强, 侯健, 闫晓鹏, 等 . 超低信噪比调频连续波引信信号小周期态Duffing振子检测[J]. 北京航空航天大学学报, 2019, 45(10): 2069-2078. doi: 10.13700/j.bh.1001-5965.2019.0032
引用本文: 朱志强, 侯健, 闫晓鹏, 等 . 超低信噪比调频连续波引信信号小周期态Duffing振子检测[J]. 北京航空航天大学学报, 2019, 45(10): 2069-2078. doi: 10.13700/j.bh.1001-5965.2019.0032
ZHU Zhiqiang, HOU Jian, YAN Xiaopeng, et al. Small-scale periodic state Duffing oscillator FMCW fuze signal detection at ultra-low SNR[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(10): 2069-2078. doi: 10.13700/j.bh.1001-5965.2019.0032(in Chinese)
Citation: ZHU Zhiqiang, HOU Jian, YAN Xiaopeng, et al. Small-scale periodic state Duffing oscillator FMCW fuze signal detection at ultra-low SNR[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(10): 2069-2078. doi: 10.13700/j.bh.1001-5965.2019.0032(in Chinese)

超低信噪比调频连续波引信信号小周期态Duffing振子检测

doi: 10.13700/j.bh.1001-5965.2019.0032
基金项目: 

国家自然科学基金 61673066

详细信息
    作者简介:

    朱志强  男, 硕士研究生。主要研究方向:无线电引信对抗技术

    侯健  女, 博士。主要研究方向:引信信息对抗技术、微弱信号检测技术

    闫晓鹏  男, 博士, 教授, 博士生导师。主要研究方向:引信信息对抗技术、引信电磁环境与效应、引信信号处理技术

    通讯作者:

    闫晓鹏, E-mail:yanxiaopeng@bit.edu.cn

  • 中图分类号: TJ43+4.1

Small-scale periodic state Duffing oscillator FMCW fuze signal detection at ultra-low SNR

Funds: 

National Natural Science Foundation of China 61673066

More Information
  • 摘要:

    针对超低信噪比(SNR)下调频连续波(FWCW)引信信号难以检测的问题,结合Duffing振子特性和可停振动系统理论,建立了小周期态Duffing振子检测系统。该系统能够克服传统Duffing振子强参考信号检测的固有缺陷,扩展单个Duffing振子的信号频率检测范围,并降低算法复杂度。在此基础上,分析Duffing振子相轨迹特性,提出了基于小周期态Duffing振子的调频连续波引信信号检测方法。实验结果表明,小周期态Duffing振子检测方法在-30 dB的超低信噪比下对真实调频引信辐射信号的平均检测误差小于1%,验证了本文方法的有效性。

     

  • 图 1  三角波调频信号时频特性

    Figure 1.  Time-frequency characteristics of triangular wave frequency-modulated signal

    图 2  Duffing振子系统相轨迹周期性的状态转换

    Figure 2.  Periodic state transitions of phase trajectory of Duffing oscillator system

    图 3  不同输入信号策动下小周期态Duffing振子系统的相轨迹图

    Figure 3.  Phase trajectories of small-scale periodic state Duffing oscillator system driven by different input signals

    图 4  待测信号时域波形和相空间角正余弦波形

    Figure 4.  Time domain waveform of to-be-detected signal and sine cosine waveform in phase spale

    图 5  频率差较大时小周期态Duffing振子系统输出的时域波形

    Figure 5.  Time domain waveform of outputs of small-scale periodic state Duffing oscillator system when frequency difference is large

    图 6  线性调频信号的频率平均检测精度与信噪比和频率变化率的关系

    Figure 6.  Relationship among average frequency detection accuracy, SNR and frequency slope of chirp signals

    图 7  -20 dB信噪比下三角波调频信号时域波形和频谱图

    Figure 7.  Time domain waveform and spectrogram of triangular wave frequency-modulated signal while SNR is -20 dB

    图 8  -20 dB信噪比下三角波调频信号时频特性

    Figure 8.  Time-frequency characteristics of triangular wave frequency-modulated signal while SNR is -20 dB

    图 9  -35 dB信噪比下3种调频引信信号的时频特性和测量误差

    Figure 9.  Time-frequency characteristics and measurement error of three types of frequency-modulated fuze signals while SNR is -35 dB

    图 10  -20 dB信噪比下某调频引信信号时频特性

    Figure 10.  Time-frequency characteristics of signal of a FMCW fuze while SNR is -20 dB

    表  1  单个Duffing振子的频率检测范围

    Table  1.   Frequency detection range with single Duffing oscillator

    b/(Hz·s-1) f/MHz SNR/dB [fL, fH]/MHz
    小周期态检测模型 强参考信号检测模型
    0 50 -20 [0.17, 254] [47.7, 52.1]
    1012 50 -20 [0.21, 212] [48.2, 51.4]
    下载: 导出CSV

    表  2  不同信噪比条件下三角波调频信号频率测量误差

    Table  2.   Frequency measurement errors of triangular wave frequency-modulated signal at different SNRs

    SNR/dB 强参考信号阵列检测方法测量误差/% 小周期态检测方法测量误差/%
    -10 0.286 5 0.280 1
    -20 1.243 0 0.288 0
    -30 3.145 5 0.307 4
    -35 9.010 4 0.464 4
    下载: 导出CSV

    表  3  不同信噪比条件下某调频引信真实信号频率测量误差

    Table  3.   Frequency measurement errors of signal of a FMCW fuze at different SNRs

    SNR/dB 测量误差/%
    -10 0.282 4
    -20 0.494 5
    -30 0.652 8
    -35 1.113 6
    下载: 导出CSV
  • [1] 彭业凌.线性调频引信信号的分选和识别[D].北京: 北京理工大学, 2015: 11, 21-80. http://cdmd.cnki.com.cn/Article/CDMD-10007-1015030390.htm

    PENG Y L.The signal separation and identification of LFM fuze[D].Beijing: Beijing Institute of Technology, 2015: 11, 21-80(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10007-1015030390.htm
    [2] 索中英, 王建民, 吴华, 等.基于小波变换的连续波多普勒体制无线电引信多普勒信号特征提取方法研究[J].探测与控制学报, 2006, 28(3):29-32. doi: 10.3969/j.issn.1008-1194.2006.03.009

    SUO Z Y, WANG J M, WU H, et al.Research on feature extraction methods for Doppler signal of continuous wave Doppler system radio fuze based on wavelet transform[J].Journal of Detection and Control, 2006, 28(3):29-32(in Chinese). doi: 10.3969/j.issn.1008-1194.2006.03.009
    [3] 黄海燕, 吕乐群, 蒲书缙.连续波调频引信信号的检测方法[J].电子信息对抗技术, 2013, 28(5):6-10. doi: 10.3969/j.issn.1674-2230.2013.05.002

    HUANG H Y, LV L Q, PU S J.Detection of continuous wave FM radio fuse[J].Electronic Information Warfare Technology, 2013, 28(5):6-10(in Chinese). doi: 10.3969/j.issn.1674-2230.2013.05.002
    [4] 朱文涛, 苏涛, 杨涛, 等.线性调频连续波信号检测与参数估计算法[J].电子与信息学报, 2014, 36(3):552-558. http://d.old.wanfangdata.com.cn/Periodical/dzkxxk201403007

    ZHU W T, SU T, YANG T, et al.Detection and parameter estimation of linear frequency modulation continuous wave signal[J].Journal of Electronics and Information Technology, 2014, 36(3):552-558(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/dzkxxk201403007
    [5] 雷磊.基于时频分析的线性调频信号检测与参数估计[D].西安: 西安电子科技大学, 2012: 29-52. http://cdmd.cnki.com.cn/Article/CDMD-10701-1013112981.htm

    LEI L.Detection and parameters estimation of LFM signal based on time-frequency analysis[D].Xi'an: Xidian University, 2012: 29-52(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10701-1013112981.htm
    [6] 陈龑豪.低信噪比雷达辐射源信号的检测[D].西安: 西安电子科技大学, 2017: 49-58. http://cdmd.cnki.com.cn/Article/CDMD-10701-1018001902.htm

    CHEN Y H.The detection of radar emitter signals under conditions of low SNR[D].Xi'an: Xidian University, 2017: 49-58(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10701-1018001902.htm
    [7] MILLIOZ F, DAVIES M.Sparse detection in the chirplet transform:Application to FMCW radar signals[J].IEEE Transactions on Signal Processing, 2012, 60(6):2800-2813. doi: 10.1109/TSP.2012.2190730
    [8] ZHAO D, LUO M.A novel weak signal detection method for linear frequency modulation signal based on bistable system and fractional Fourier transform[J].Optik-International Journal for Light and Electron Optics, 2016, 127(10):4405-4412. doi: 10.1016/j.ijleo.2016.01.057
    [9] 唐友福, 刘树林, 雷娜, 等.基于广义局部频率的Duffing系统频域特征分析[J].物理学报, 2012, 61(17):67-75. http://d.old.wanfangdata.com.cn/Periodical/wlxb201217011

    TANG Y F, LIU S L, LEI N, et al.Feature analysis in frequency domain of Duffing system based on general local frequency[J].Acta Physica Sinica, 2012, 61(17):67-75(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/wlxb201217011
    [10] JIANG Y, ZHU H, LI Z.A new compound faults detection method for rolling bearings based on empirical wavelet transform and chaotic oscillator[J].Chaos, Solitons and Fractals, 2015, I:1-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f0294686fbc5f930f01166a9a1758c25
    [11] 聂春燕.混沌系统与弱信号检测[M].北京:清华大学出版社, 2009:21-104.

    NIE C Y.Chaotic system and weak signal detection[M].Beijing:Tsinghua University Press, 2009:21-104(in Chinese).
    [12] 李楠.水下弱目标信号的Duffing振子检测方法研究[D].哈尔滨: 哈尔滨工程大学, 2017: 13-42.

    LI N.A detection method of the underwater weak target signal based on Duffing oscillator[D].Harbin: Harbin Engineering University, 2017: 13-42(in Chinese).
    [13] 周薛雪, 赖莉, 罗懋康.基于分数阶可停振动系统的周期未知微弱信号检测方法[J].物理学报, 2013, 62(9):57-69. http://d.old.wanfangdata.com.cn/Periodical/wlxb201309011

    ZHOU X X, LAI L, LUO M K.A new detecting method for periodic weak signals based on fractional order stopping oscillation system[J].Acta Physica Sinica, 2013, 62(9):57-69(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/wlxb201309011
    [14] 李月, 杨宝俊, 林红波, 等.基于特定混沌系统微弱谐波信号频率检测的理论分析与仿真[J].物理学报, 2005, 54(5):1994-1999. doi: 10.3321/j.issn:1000-3290.2005.05.007

    LI Y, YANG B J, LIN H B, et al.Simulation and theoretical analysis on detection of the frequency of weak harmonic signals based on a special chaotic system[J].Acta Physica Sinica, 2005, 54(5):1994-1999(in Chinese). doi: 10.3321/j.issn:1000-3290.2005.05.007
    [15] RASHTCHI V, NOURAZAR M.FPGA implementation of a real-time weak signal detector using a Duffing oscillator[J].Circuits Systems & Signal Processing, 2015, 34(10):3101-3119. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7cb93ded4bed6c65a8de0d4874266c75
    [16] 刘海波, 吴德伟, 金伟, 等.Duffing振子微弱信号检测方法研究[J].物理学报, 2013, 62(5):42-47. http://d.old.wanfangdata.com.cn/Periodical/wlxb201305007

    LIU H B, WU D W, JIN W, et al.Study on weak signal detection method with Duffing oscillators[J].Acta Physica Sinica, 2013, 62(5):42-47(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/wlxb201305007
    [17] LI M P, XU X M, YANG B C, et al.A circular zone counting method of identifying a Duffing oscillator state transition and determining the critical value in weak signal detection[J].Chinese Physics B, 2015, 24(6):196-201. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgwl-e201506024
    [18] 赖志慧, 冷永刚, 孙建桥, 等.基于Duffing振子的变尺度微弱特征信号推测方法研究[J].物理学报, 2012, 61(5):050503. http://www.cnki.com.cn/Article/CJFDTotal-WLXB201205012.htm

    LAI Z H, LENG Y G, SUN J Q, et al.Weak characteristic signal detection based on scale transformation of Duffing oscillator[J].Acta Physica Sinica, 2012, 61(5):050503(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-WLXB201205012.htm
    [19] 朱位秋.非线性随机动力学与控制[M].北京:科学出版社, 2003:330-335.

    ZHU W Q.Nonlinear stochastic dynamical systems and control[M].Beijing:Science Press, 2003:330-335(in Chinese).
    [20] COSTA A H, ENRÍQUEZ-CALDERA R, TELLO-BELLO M.High resolution time-frequency representation for chirp signals using an adaptive system based on Duffing oscillators[J].Digital Signal Processing, 2016, 55:32-43. doi: 10.1016/j.dsp.2016.04.008
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  795
  • HTML全文浏览量:  67
  • PDF下载量:  355
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-22
  • 录用日期:  2019-04-26
  • 网络出版日期:  2019-10-20

目录

    /

    返回文章
    返回
    常见问答