Small-scale periodic state Duffing oscillator FMCW fuze signal detection at ultra-low SNR
-
摘要:
针对超低信噪比(SNR)下调频连续波(FWCW)引信信号难以检测的问题,结合Duffing振子特性和可停振动系统理论,建立了小周期态Duffing振子检测系统。该系统能够克服传统Duffing振子强参考信号检测的固有缺陷,扩展单个Duffing振子的信号频率检测范围,并降低算法复杂度。在此基础上,分析Duffing振子相轨迹特性,提出了基于小周期态Duffing振子的调频连续波引信信号检测方法。实验结果表明,小周期态Duffing振子检测方法在-30 dB的超低信噪比下对真实调频引信辐射信号的平均检测误差小于1%,验证了本文方法的有效性。
-
关键词:
- 调频连续波(FMCW)引信 /
- Duffing振子 /
- 小周期态 /
- 可停振动系统 /
- 信噪比(SNR)
Abstract:Aimed at the problem that the signal of frequency-modulated continuous wave (FMCW) fuze is very difficult to detect at ultra-low signal to noise ratio (SNR), a detection system based on small-scale periodic state Duffing oscillator is established. This system combines Duffing oscillator characteristics with stopping oscillation system theory, eliminating the inherent deficiencies of the traditional transformation-dependent Duffing oscillator detection methods, extending the frequency detection range through a single Duffing oscillator, and reducing the computing cost. On this basis, the phase trajectory characteristics of the small-scale periodic state are analyzed, and then a FMCW fuze signal detection method based on small-scale periodic state Duffing oscillator is proposed. The experimental results show that the small-scale periodic state Duffing oscillator detection method has an average detection error of less than 1% for the real FMCW fuze radiation signal at -30 dB ultra-low SNR, which verifies the effectiveness of the proposed method.
-
表 1 单个Duffing振子的频率检测范围
Table 1. Frequency detection range with single Duffing oscillator
b/(Hz·s-1) f/MHz SNR/dB [fL, fH]/MHz 小周期态检测模型 强参考信号检测模型 0 50 -20 [0.17, 254] [47.7, 52.1] 1012 50 -20 [0.21, 212] [48.2, 51.4] 表 2 不同信噪比条件下三角波调频信号频率测量误差
Table 2. Frequency measurement errors of triangular wave frequency-modulated signal at different SNRs
SNR/dB 强参考信号阵列检测方法测量误差/% 小周期态检测方法测量误差/% -10 0.286 5 0.280 1 -20 1.243 0 0.288 0 -30 3.145 5 0.307 4 -35 9.010 4 0.464 4 表 3 不同信噪比条件下某调频引信真实信号频率测量误差
Table 3. Frequency measurement errors of signal of a FMCW fuze at different SNRs
SNR/dB 测量误差/% -10 0.282 4 -20 0.494 5 -30 0.652 8 -35 1.113 6 -
[1] 彭业凌.线性调频引信信号的分选和识别[D].北京: 北京理工大学, 2015: 11, 21-80. http://cdmd.cnki.com.cn/Article/CDMD-10007-1015030390.htmPENG Y L.The signal separation and identification of LFM fuze[D].Beijing: Beijing Institute of Technology, 2015: 11, 21-80(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10007-1015030390.htm [2] 索中英, 王建民, 吴华, 等.基于小波变换的连续波多普勒体制无线电引信多普勒信号特征提取方法研究[J].探测与控制学报, 2006, 28(3):29-32. doi: 10.3969/j.issn.1008-1194.2006.03.009SUO Z Y, WANG J M, WU H, et al.Research on feature extraction methods for Doppler signal of continuous wave Doppler system radio fuze based on wavelet transform[J].Journal of Detection and Control, 2006, 28(3):29-32(in Chinese). doi: 10.3969/j.issn.1008-1194.2006.03.009 [3] 黄海燕, 吕乐群, 蒲书缙.连续波调频引信信号的检测方法[J].电子信息对抗技术, 2013, 28(5):6-10. doi: 10.3969/j.issn.1674-2230.2013.05.002HUANG H Y, LV L Q, PU S J.Detection of continuous wave FM radio fuse[J].Electronic Information Warfare Technology, 2013, 28(5):6-10(in Chinese). doi: 10.3969/j.issn.1674-2230.2013.05.002 [4] 朱文涛, 苏涛, 杨涛, 等.线性调频连续波信号检测与参数估计算法[J].电子与信息学报, 2014, 36(3):552-558. http://d.old.wanfangdata.com.cn/Periodical/dzkxxk201403007ZHU W T, SU T, YANG T, et al.Detection and parameter estimation of linear frequency modulation continuous wave signal[J].Journal of Electronics and Information Technology, 2014, 36(3):552-558(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/dzkxxk201403007 [5] 雷磊.基于时频分析的线性调频信号检测与参数估计[D].西安: 西安电子科技大学, 2012: 29-52. http://cdmd.cnki.com.cn/Article/CDMD-10701-1013112981.htmLEI L.Detection and parameters estimation of LFM signal based on time-frequency analysis[D].Xi'an: Xidian University, 2012: 29-52(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10701-1013112981.htm [6] 陈龑豪.低信噪比雷达辐射源信号的检测[D].西安: 西安电子科技大学, 2017: 49-58. http://cdmd.cnki.com.cn/Article/CDMD-10701-1018001902.htmCHEN Y H.The detection of radar emitter signals under conditions of low SNR[D].Xi'an: Xidian University, 2017: 49-58(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10701-1018001902.htm [7] MILLIOZ F, DAVIES M.Sparse detection in the chirplet transform:Application to FMCW radar signals[J].IEEE Transactions on Signal Processing, 2012, 60(6):2800-2813. doi: 10.1109/TSP.2012.2190730 [8] ZHAO D, LUO M.A novel weak signal detection method for linear frequency modulation signal based on bistable system and fractional Fourier transform[J].Optik-International Journal for Light and Electron Optics, 2016, 127(10):4405-4412. doi: 10.1016/j.ijleo.2016.01.057 [9] 唐友福, 刘树林, 雷娜, 等.基于广义局部频率的Duffing系统频域特征分析[J].物理学报, 2012, 61(17):67-75. http://d.old.wanfangdata.com.cn/Periodical/wlxb201217011TANG Y F, LIU S L, LEI N, et al.Feature analysis in frequency domain of Duffing system based on general local frequency[J].Acta Physica Sinica, 2012, 61(17):67-75(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/wlxb201217011 [10] JIANG Y, ZHU H, LI Z.A new compound faults detection method for rolling bearings based on empirical wavelet transform and chaotic oscillator[J].Chaos, Solitons and Fractals, 2015, I:1-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f0294686fbc5f930f01166a9a1758c25 [11] 聂春燕.混沌系统与弱信号检测[M].北京:清华大学出版社, 2009:21-104.NIE C Y.Chaotic system and weak signal detection[M].Beijing:Tsinghua University Press, 2009:21-104(in Chinese). [12] 李楠.水下弱目标信号的Duffing振子检测方法研究[D].哈尔滨: 哈尔滨工程大学, 2017: 13-42.LI N.A detection method of the underwater weak target signal based on Duffing oscillator[D].Harbin: Harbin Engineering University, 2017: 13-42(in Chinese). [13] 周薛雪, 赖莉, 罗懋康.基于分数阶可停振动系统的周期未知微弱信号检测方法[J].物理学报, 2013, 62(9):57-69. http://d.old.wanfangdata.com.cn/Periodical/wlxb201309011ZHOU X X, LAI L, LUO M K.A new detecting method for periodic weak signals based on fractional order stopping oscillation system[J].Acta Physica Sinica, 2013, 62(9):57-69(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/wlxb201309011 [14] 李月, 杨宝俊, 林红波, 等.基于特定混沌系统微弱谐波信号频率检测的理论分析与仿真[J].物理学报, 2005, 54(5):1994-1999. doi: 10.3321/j.issn:1000-3290.2005.05.007LI Y, YANG B J, LIN H B, et al.Simulation and theoretical analysis on detection of the frequency of weak harmonic signals based on a special chaotic system[J].Acta Physica Sinica, 2005, 54(5):1994-1999(in Chinese). doi: 10.3321/j.issn:1000-3290.2005.05.007 [15] RASHTCHI V, NOURAZAR M.FPGA implementation of a real-time weak signal detector using a Duffing oscillator[J].Circuits Systems & Signal Processing, 2015, 34(10):3101-3119. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7cb93ded4bed6c65a8de0d4874266c75 [16] 刘海波, 吴德伟, 金伟, 等.Duffing振子微弱信号检测方法研究[J].物理学报, 2013, 62(5):42-47. http://d.old.wanfangdata.com.cn/Periodical/wlxb201305007LIU H B, WU D W, JIN W, et al.Study on weak signal detection method with Duffing oscillators[J].Acta Physica Sinica, 2013, 62(5):42-47(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/wlxb201305007 [17] LI M P, XU X M, YANG B C, et al.A circular zone counting method of identifying a Duffing oscillator state transition and determining the critical value in weak signal detection[J].Chinese Physics B, 2015, 24(6):196-201. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgwl-e201506024 [18] 赖志慧, 冷永刚, 孙建桥, 等.基于Duffing振子的变尺度微弱特征信号推测方法研究[J].物理学报, 2012, 61(5):050503. http://www.cnki.com.cn/Article/CJFDTotal-WLXB201205012.htmLAI Z H, LENG Y G, SUN J Q, et al.Weak characteristic signal detection based on scale transformation of Duffing oscillator[J].Acta Physica Sinica, 2012, 61(5):050503(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-WLXB201205012.htm [19] 朱位秋.非线性随机动力学与控制[M].北京:科学出版社, 2003:330-335.ZHU W Q.Nonlinear stochastic dynamical systems and control[M].Beijing:Science Press, 2003:330-335(in Chinese). [20] COSTA A H, ENRÍQUEZ-CALDERA R, TELLO-BELLO M.High resolution time-frequency representation for chirp signals using an adaptive system based on Duffing oscillators[J].Digital Signal Processing, 2016, 55:32-43. doi: 10.1016/j.dsp.2016.04.008