留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于非等维状态的IMM混合估计方法

欧能杰 汪圣利 张直

欧能杰, 汪圣利, 张直等 . 基于非等维状态的IMM混合估计方法[J]. 北京航空航天大学学报, 2019, 45(10): 2115-2122. doi: 10.13700/j.bh.1001-5965.2019.0038
引用本文: 欧能杰, 汪圣利, 张直等 . 基于非等维状态的IMM混合估计方法[J]. 北京航空航天大学学报, 2019, 45(10): 2115-2122. doi: 10.13700/j.bh.1001-5965.2019.0038
OU Nengjie, WANG Shengli, ZHANG Zhiet al. IMM mixing estimation method based on unequal dimension states[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(10): 2115-2122. doi: 10.13700/j.bh.1001-5965.2019.0038(in Chinese)
Citation: OU Nengjie, WANG Shengli, ZHANG Zhiet al. IMM mixing estimation method based on unequal dimension states[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(10): 2115-2122. doi: 10.13700/j.bh.1001-5965.2019.0038(in Chinese)

基于非等维状态的IMM混合估计方法

doi: 10.13700/j.bh.1001-5965.2019.0038
详细信息
    作者简介:

    欧能杰  男, 硕士研究生。主要研究方向:雷达数据处理

    汪圣利  男, 博士, 研究员。主要研究方向:信息融合、雷达数据处理

    张直  男, 博士。主要研究方向:雷达数据处理

    通讯作者:

    汪圣利, E-mail:slwangbb@sina.com

  • 中图分类号: TN953

IMM mixing estimation method based on unequal dimension states

More Information
  • 摘要:

    在目标跟踪领域,交互多模型(IMM)估计器具有良好的性能和较低的复杂度。IMM的成功归因于模式混合,其中各模型输出用于模型条件重初始化。针对IMM算法中存在的非等维状态混合估计问题进行了研究,在总结现有算法的基础上提出了一种最优的IMM混合估计方法。该方法通过将"切换"态的概念引入目标状态,根据当前滤波时刻的模型概率和新息,动态地调整混合策略以实现最优估计。最后,通过仿真实验验证了所提算法在不同模型混合场景中的表现要优于现有的算法。

     

  • 图 1  本文方法原理框图

    Figure 1.  Functional block diagram of proposed method

    图 2  场景1和2的真实轨迹

    Figure 2.  True trajectories of Scenarios 1 and 2

    图 3  场景1位置均方根误差(σa2=10-2)

    Figure 3.  Position RMSE of Scenario 1 (σa2=10-2)

    图 4  场景1速度均方根误差(σa2=10-2)

    Figure 4.  Velocity RMSE of Scenario 1 (σa2=10-2)

    图 5  场景1位置均方根误差(σa2=101)

    Figure 5.  Position RMSE of Scenario 1 (σa2=101)

    图 6  场景1速度均方根误差(σa2=101)

    Figure 6.  Velocity RMSE of Scenario 1 (σa2=101)

    图 7  不同过程噪声下场景1位置均方根误差均值

    Figure 7.  Mean value of position RMSE of Scenario 1 under different process noises

    图 8  场景2位置均方根误差(σa2=100)

    Figure 8.  Position RMSE of Scenario 2 (σa2=100)

    图 9  场景2速度均方根误差(σa2=100)

    Figure 9.  Velocity RMSE of Scenario 2 (σa2=100)

    图 10  不同过程噪声下场景2位置均方根误差均值

    Figure 10.  Mean value of position RMSE of Scenario 2 under different process noises

  • [1] LI X R, JILKOV V P.Survey of maneuvering target tracking.Part V.Multiple-model methods[J].IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(4):1255-1321. doi: 10.1109/TAES.2005.1561886
    [2] MAZOR E, AVERBUCH A, BAR-SHALOM Y, et al.Interacting multiple model methods in target tracking:A survey[J].IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(1):103-123. doi: 10.1109/7.640267
    [3] FOO P H, NG G W.Combining the interacting multiple model method with particle filters for manoeuvring target tracking[J].IET Radar, Sonar & Navigation, 2011, 5(3):234-255. http://cn.bing.com/academic/profile?id=01c95f5140dc5e6cf0c125c59517ae3a&encoded=0&v=paper_preview&mkt=zh-cn
    [4] 翟岱亮, 雷虎民, 李炯, 等.基于自适应IMM的高超声速飞行器轨迹预测[J].航空学报, 2016, 37(11):3466-3475. http://d.old.wanfangdata.com.cn/Periodical/hkxb201611024

    ZHAI D L, LEI H M, LI J, et al.Trajectory prediction of hypersonic vehicle based on adaptive IMM[J].Acta Aeronautica et Astronautica Sinica, 2016, 37(11):3466-3475(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb201611024
    [5] LI X R.Multiple-model estimation with variable structure.II.Model-set adaptation[J].IEEE Transactions on Automatic Control, 2000, 45(11):2047-2060. doi: 10.1109/9.887626
    [6] JAFFER A G, GUPTA S C.On estimation of discrete processes under multiplicative and additive noise conditions[J].Information Sciences, 1971, 3(3):267-276. doi: 10.1016/S0020-0255(71)80010-5
    [7] BLOM H A P, BAR-SHALOM Y.The interacting multiple model algorithm for systems with Markovian switching coefficients[J].IEEE Transactions on Automatic Control, 1988, 33(8):780-783. doi: 10.1109/9.1299
    [8] LI X R, BAR-SHALOM Y.Multiple-model estimation with variable structure[J].IEEE Transactions on Automatic Control, 1996, 41(4):478-493. doi: 10.1109/9.489270
    [9] LAN J, LI X R.Equivalent-model augmentation for variable-structure multiple-model estimation[J].IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(4):2615-2630. doi: 10.1109/TAES.2013.6621840
    [10] XU L, LI X R, DUAN Z.Hybrid grid multiple-model estimation with application to maneuvering target tracking[J].IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(1):122-136. doi: 10.1109/TAES.2015.140423
    [11] BAR-SHALOM Y, WILLETT P K, TIAN X.Tracking and data fusion[M].Storrs:YBS Publishing, 2011.
    [12] YUAN T, BAR-SHALOM Y, WILLETT P, et al.A multiple IMM estimation approach with unbiased mixing for thrusting projectiles[J].IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(4):3250-3267. doi: 10.1109/TAES.2012.6324701
    [13] GRANSTRÖM K, WILLETT P, BAR-SHALOM Y.Systematic approach to IMM mixing for unequal dimension states[J].IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(4):2975-2986. doi: 10.1109/TAES.2015.150015
    [14] LOPEZ R, DANÈS P, ROYER F.Extending the IMM filter to heterogeneous-order state space models[C]//49th IEEE Conference on Decision and Control (CDC).Piscataway, NJ: IEEE Press, 2010: 7369-7374.
    [15] BAR-SHALOM Y, BIRMIWAL K.Variable dimension filter for maneuvering target tracking[J].IEEE Transactions on Aerospace and Electronic Systems, 1982, 27(5):621-629. doi: 10.1109-TAES.1982.309274/
    [16] JIN B, JIU B, SU T, et al.Switched Kalman filter-interacting multiple model algorithm based on optimal autoregressive model for manoeuvring target tracking[J].IET Radar, Sonar & Navigation, 2014, 9(2):199-209. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e1e669339a0e8d32a2585e2c4a7aa6bb
    [17] LI X R, JILKOV V P.Survey of maneuvering target tracking.Part IV: Decision-based methods[C]//SPIE Proceedings Series.Society of Photo-Optical Instrumentation Engineers.Piscataway, NJ: IEEE Press, 2002: 511-534.
    [18] LOPEZ R, DANES P.Low-complexity IMM smoothing for jump Markov nonlinear systems[J].IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(3):1261-1272. doi: 10.1109/TAES.2017.2669698
    [19] KALMAN R E.A new approach to linear filtering and prediction problems[J].Journal of basic Engineering, 1960, 82(1):35-45. doi: 10.1115/1.3662552
  • 加载中
图(10)
计量
  • 文章访问数:  903
  • HTML全文浏览量:  128
  • PDF下载量:  374
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-29
  • 录用日期:  2019-05-18
  • 网络出版日期:  2019-10-20

目录

    /

    返回文章
    返回
    常见问答