-
摘要:
为了实现某型液体火箭发动机机载实时故障诊断,采用FPGA与DSP相结合的方式作为硬件架构设计了故障诊断器,其中FPGA控制高精度A/D转换器进行传感器数据采集,DSP运行故障诊断算法并将结果输出,对故障诊断器的硬件和软件分别进行了设计。提出了一种递归结构识别(RESID)算法用于液体火箭发动机故障诊断,该算法可在6 ms内诊断出流量衰减故障。搭建基于故障诊断器和工控机的硬件在环(HIL)试验平台,采用自动代码生成技术与手写代码结合的方式对RESID算法进行了试验验证,通过上位机界面进行观察。结果表明:RESID算法能准确地诊断出发动机常见的故障并在故障诊断器上实现,算法运行时间为3.9 ms,故障诊断器可以实现实时数据监测和故障诊断,相对于传统平台更加小型化和经济化,既可以作为机载装置使用,也可作为通用平台来开发新算法。
Abstract:In order to realize the real-time fault diagnosis of a liquid rocket engine onboard, a fault diagnosis device is designed by combining FPGA and DSP as the hardware architecture. The FPGA controls the high-precision A/D for sensor data acquisition, the DSP runs the fault diagnosis algorithm and outputs the result. The hardware and software of the fault diagnosis device were designed separately. A recursive structure identification (RESID) algorithm is proposed for liquid rocket engine fault diagnosis. The algorithm can diagnose traffic attenuation faults in 6 ms. Based on the hardware-in-the-loop (HIL) test platform of fault diagnosis and industrial computer, the algorithm was tested and verified by the combination of automatic code generation technology and handwritten code, and observed through the upper computer interface. The results show that the RESID algorithm can accurately diagnose the common faults of the engine and realize it on the fault diagnosis device. The running time of the algorithm is 3.9 ms. The fault diagnosis device can realize real-time data monitoring and fault diagnosis, which is more compact and economical than the traditional platform. It can be used both as an onboard device and as a general platform to develop new algorithms.
-
Key words:
- liquid rocket engine /
- fault diagnosis /
- fault diagnosis device /
- FPGA+DSP /
- code generation /
- HIL platform
-
表 1 液体火箭发动机传感器测点
Table 1. Sensor measurement points for liquid rocket engines
参数 变量符号 单位 甲烷涡轮泵转速 nf r/min 液氧涡轮泵转速 no r/min 甲烷泵后压力 Pef MPa 液氧泵后压力 Peo MPa 副系统甲烷喷嘴前压力 Pgf MPa 副系统液氧喷嘴前压力 Pgo MPa 主系统甲烷喷嘴前压力 Pcf MPa 主系统液氧喷嘴前压力 Pco MPa 燃气发生器压力 Pg MPa 燃气发生器温度 Tg K 燃烧室压力 Pc MPa -
[1] LI Y J, PENG X H, CHENG Y Q, et al.Research of pipeline fault diagnosis for liquid rocket propulsion system[J].Applied Mechanics and Materials, 2012, 232:305-309. doi: 10.4028/www.scientific.net/AMM.232.305 [2] LI Y J, PENG X H, CHENG Y Q, et al.Research of faulty sensors data reconstructed for liquid-propellant rocket engines[J].Applied Mechanics and Materials, 2012, 229-231:1449-1453. doi: 10.4028/www.scientific.net/AMM.229-231.1449 [3] ZHU F, WANG Q, SHEN Z.APSO-RVM for fault detection of liquid rocket engines test-bed[J].Information Technology Journal, 2012, 11(10):1496-1501. doi: 10.3923/itj.2012.1496.1501 [4] DOU W, SUN L.Analysis of on-site fault diagnosis technology of a liquid rocket engine[J].Strength and Environment, 2010, 37(5):46-51. [5] JI W, TAN D L, NDAGIJIMANA E, et al.An embedded hardware-in-the-loop testbed for aeroengine simulation education: AIAA-2018-4621[R].Reston: AIAA, 2018. [6] CHI Z, JIA Q, WANG X, et al.An intelligent interface design method based on DSP and FPGA[C]//International Conference on Electrical, Mechanical and Industrial Engineering, 2016: 318-321. [7] 徐加彦, 张之万, 陈兴林, 等.基于FPGA的高速多通道AD采样系统的设计与实现[J].自动化与仪表, 2014, 29(9):49-52. doi: 10.3969/j.issn.1001-9944.2014.09.013XU J Y, ZHANG Z W, CHEN X L, et al.Design and implementation of high speed multichannel AD sampling system based on FPGA[J].Automation and Instrumentation, 2014, 29(9):49-52(in Chinese). doi: 10.3969/j.issn.1001-9944.2014.09.013 [8] 姜楠, 马迎建, 冯翔.DSP和FPGA并行通信方法研究[J].电子测量技术, 2008, 31(10):146-148. doi: 10.3969/j.issn.1002-7300.2008.10.042JIANG N, MA Y J, FENG X.Research on parallel communication method between DSP and FPGA[J].Electronic Measurement Technology, 2008, 31(10):146-148(in Chinese). doi: 10.3969/j.issn.1002-7300.2008.10.042 [9] 郭迎清, 冯健朋, 张书刚.涡扇发动机故障诊断硬件在回路实时仿真平台[J].航空工程进展, 2014, 5(2):165-170. doi: 10.3969/j.issn.1674-8190.2014.02.006GUO Y Q, FENG J P, ZHANG S G.Hardware-in-the-loop simulation platform for turbofan engine fault diagnosis[J].Journal of Aeronautical Engineering, 2014, 5(2):165-170(in Chinese). doi: 10.3969/j.issn.1674-8190.2014.02.006 [10] WU J.Liquid-propellant rocket engines health-monitoring-A survey[J].Acta Astronautica, 2005, 56(3):347-356. doi: 10.1016/j.actaastro.2004.05.070 [11] LEE K, CHA J, KO S, et al.Fault detection and diagnosis algorithms for an open-cycle liquid propellant rocket engine using the Kalman filter and fault factor methods[J].Acta Astronautica, 2018, 150:15-27. doi: 10.1016/j.actaastro.2018.03.001 [12] ZHUO P C, ZHU Y, WU W X, et al.Real-time fault diagnosis for gas turbine blade based on output-hidden feedback Elman neural network[J].Journal of Shanghai Jiaotong University(Science), 2018, 23(Suppl):95-102. http://cn.bing.com/academic/profile?id=44e8637043111ca2158cca16adbd0bfc&encoded=0&v=paper_preview&mkt=zh-cn [13] THOMAS G L, CULLEY D E, BRAND A.The application of hardware in the loop testing for distributed engine control[C]//AIAA/SAE/ASEE Joint Propulsion Conference, 2016: 1-11. [14] KULIKOV G G, AR'KOV V Y, ABDULNAGIMOV A I.Hardware-in-the-loop testing technology for integrated control and condition monitoring systems of aircraft gas turbine engines[J].Russian Aeronautics, 2008, 51(1):47-52. doi: 10.3103/S106879980801008X [15] 吕升, 郭迎清, 孙浩.航空发动机故障诊断装置硬件在环实时仿真平台[J].航空发动机, 2017, 43(3):43-49. http://d.old.wanfangdata.com.cn/Periodical/hkfdj201703010LÜ S, GUO Y Q, SUN H.Hardware-in-the-loop real-time simulation platform for aero-engine fault diagnosis device[J].Aero Engine, 2017, 43(3):43-49(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkfdj201703010