留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液体火箭发动机故障诊断器设计及其HIL验证

赵万里 郭迎清 杨菁 薛薇 武小平

赵万里, 郭迎清, 杨菁, 等 . 液体火箭发动机故障诊断器设计及其HIL验证[J]. 北京航空航天大学学报, 2019, 45(10): 1995-2002. doi: 10.13700/j.bh.1001-5965.2019.0044
引用本文: 赵万里, 郭迎清, 杨菁, 等 . 液体火箭发动机故障诊断器设计及其HIL验证[J]. 北京航空航天大学学报, 2019, 45(10): 1995-2002. doi: 10.13700/j.bh.1001-5965.2019.0044
ZHAO Wanli, GUO Yingqing, YANG Jing, et al. Design of liquid rocket engine fault diagnosis device and its HIL verification[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(10): 1995-2002. doi: 10.13700/j.bh.1001-5965.2019.0044(in Chinese)
Citation: ZHAO Wanli, GUO Yingqing, YANG Jing, et al. Design of liquid rocket engine fault diagnosis device and its HIL verification[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(10): 1995-2002. doi: 10.13700/j.bh.1001-5965.2019.0044(in Chinese)

液体火箭发动机故障诊断器设计及其HIL验证

doi: 10.13700/j.bh.1001-5965.2019.0044
详细信息
    作者简介:

    赵万里   男, 博士研究生。主要研究方向:液体火箭发动机故障诊断算法及其硬件在环仿真平台设计

    郭迎清   男, 教授, 博士生导师。主要研究方向:航空发动机先进控制技术、故障诊断与健康管理

    杨菁   女, 博士研究生。主要研究方向:复杂系统的故障诊断与预测

    通讯作者:

    郭迎清, E-mail: yqguo@nwpu.edu.cn

  • 中图分类号: V433.9

Design of liquid rocket engine fault diagnosis device and its HIL verification

More Information
  • 摘要:

    为了实现某型液体火箭发动机机载实时故障诊断,采用FPGA与DSP相结合的方式作为硬件架构设计了故障诊断器,其中FPGA控制高精度A/D转换器进行传感器数据采集,DSP运行故障诊断算法并将结果输出,对故障诊断器的硬件和软件分别进行了设计。提出了一种递归结构识别(RESID)算法用于液体火箭发动机故障诊断,该算法可在6 ms内诊断出流量衰减故障。搭建基于故障诊断器和工控机的硬件在环(HIL)试验平台,采用自动代码生成技术与手写代码结合的方式对RESID算法进行了试验验证,通过上位机界面进行观察。结果表明:RESID算法能准确地诊断出发动机常见的故障并在故障诊断器上实现,算法运行时间为3.9 ms,故障诊断器可以实现实时数据监测和故障诊断,相对于传统平台更加小型化和经济化,既可以作为机载装置使用,也可作为通用平台来开发新算法。

     

  • 图 1  故障诊断器总体架构

    Figure 1.  Overall architecture of fault diagnosis device

    图 2  A/D采集实现框图

    Figure 2.  Block diagram of A/D acquisition implementation

    Figure 3.  Block diagram of display module and alarm module implementation

    图 4  AD7606有限状态机结构框图

    Figure 4.  Structural block diagram of AD7606 finite state machine

    图 5  FPGA控制AD7606有限状态机

    Figure 5.  FPGA controlling AD7606 finite state machine

    图 6  两级RESID网络示意图

    Figure 6.  Schematic of two-level RESID network

    图 7  RESID算法框图

    Figure 7.  Block diagram of RESID algorithm

    图 8  RESID算法训练残差

    Figure 8.  Training residuals of RESID algorithm

    图 9  RESID算法故障诊断结果

    Figure 9.  Fault diagnosis results of RESID algorithm

    图 10  HIL仿真平台总体结构设计框图

    Figure 10.  Overall structure design block diagram of HIL simulation platform

    图 11  故障诊断器和HIL平台实物图

    Figure 11.  Photo of fault diagnosis device and HIL platform

    图 12  液体火箭发动机故障诊断平台上位机界面

    Figure 12.  Upper computer interface of fault diagnosis platform for liquid rocket engine

    表  1  液体火箭发动机传感器测点

    Table  1.   Sensor measurement points for liquid rocket engines

    参数 变量符号 单位
    甲烷涡轮泵转速 nf r/min
    液氧涡轮泵转速 no r/min
    甲烷泵后压力 Pef MPa
    液氧泵后压力 Peo MPa
    副系统甲烷喷嘴前压力 Pgf MPa
    副系统液氧喷嘴前压力 Pgo MPa
    主系统甲烷喷嘴前压力 Pcf MPa
    主系统液氧喷嘴前压力 Pco MPa
    燃气发生器压力 Pg MPa
    燃气发生器温度 Tg K
    燃烧室压力 Pc MPa
    下载: 导出CSV
  • [1] LI Y J, PENG X H, CHENG Y Q, et al.Research of pipeline fault diagnosis for liquid rocket propulsion system[J].Applied Mechanics and Materials, 2012, 232:305-309. doi: 10.4028/www.scientific.net/AMM.232.305
    [2] LI Y J, PENG X H, CHENG Y Q, et al.Research of faulty sensors data reconstructed for liquid-propellant rocket engines[J].Applied Mechanics and Materials, 2012, 229-231:1449-1453. doi: 10.4028/www.scientific.net/AMM.229-231.1449
    [3] ZHU F, WANG Q, SHEN Z.APSO-RVM for fault detection of liquid rocket engines test-bed[J].Information Technology Journal, 2012, 11(10):1496-1501. doi: 10.3923/itj.2012.1496.1501
    [4] DOU W, SUN L.Analysis of on-site fault diagnosis technology of a liquid rocket engine[J].Strength and Environment, 2010, 37(5):46-51.
    [5] JI W, TAN D L, NDAGIJIMANA E, et al.An embedded hardware-in-the-loop testbed for aeroengine simulation education: AIAA-2018-4621[R].Reston: AIAA, 2018.
    [6] CHI Z, JIA Q, WANG X, et al.An intelligent interface design method based on DSP and FPGA[C]//International Conference on Electrical, Mechanical and Industrial Engineering, 2016: 318-321.
    [7] 徐加彦, 张之万, 陈兴林, 等.基于FPGA的高速多通道AD采样系统的设计与实现[J].自动化与仪表, 2014, 29(9):49-52. doi: 10.3969/j.issn.1001-9944.2014.09.013

    XU J Y, ZHANG Z W, CHEN X L, et al.Design and implementation of high speed multichannel AD sampling system based on FPGA[J].Automation and Instrumentation, 2014, 29(9):49-52(in Chinese). doi: 10.3969/j.issn.1001-9944.2014.09.013
    [8] 姜楠, 马迎建, 冯翔.DSP和FPGA并行通信方法研究[J].电子测量技术, 2008, 31(10):146-148. doi: 10.3969/j.issn.1002-7300.2008.10.042

    JIANG N, MA Y J, FENG X.Research on parallel communication method between DSP and FPGA[J].Electronic Measurement Technology, 2008, 31(10):146-148(in Chinese). doi: 10.3969/j.issn.1002-7300.2008.10.042
    [9] 郭迎清, 冯健朋, 张书刚.涡扇发动机故障诊断硬件在回路实时仿真平台[J].航空工程进展, 2014, 5(2):165-170. doi: 10.3969/j.issn.1674-8190.2014.02.006

    GUO Y Q, FENG J P, ZHANG S G.Hardware-in-the-loop simulation platform for turbofan engine fault diagnosis[J].Journal of Aeronautical Engineering, 2014, 5(2):165-170(in Chinese). doi: 10.3969/j.issn.1674-8190.2014.02.006
    [10] WU J.Liquid-propellant rocket engines health-monitoring-A survey[J].Acta Astronautica, 2005, 56(3):347-356. doi: 10.1016/j.actaastro.2004.05.070
    [11] LEE K, CHA J, KO S, et al.Fault detection and diagnosis algorithms for an open-cycle liquid propellant rocket engine using the Kalman filter and fault factor methods[J].Acta Astronautica, 2018, 150:15-27. doi: 10.1016/j.actaastro.2018.03.001
    [12] ZHUO P C, ZHU Y, WU W X, et al.Real-time fault diagnosis for gas turbine blade based on output-hidden feedback Elman neural network[J].Journal of Shanghai Jiaotong University(Science), 2018, 23(Suppl):95-102. http://cn.bing.com/academic/profile?id=44e8637043111ca2158cca16adbd0bfc&encoded=0&v=paper_preview&mkt=zh-cn
    [13] THOMAS G L, CULLEY D E, BRAND A.The application of hardware in the loop testing for distributed engine control[C]//AIAA/SAE/ASEE Joint Propulsion Conference, 2016: 1-11.
    [14] KULIKOV G G, AR'KOV V Y, ABDULNAGIMOV A I.Hardware-in-the-loop testing technology for integrated control and condition monitoring systems of aircraft gas turbine engines[J].Russian Aeronautics, 2008, 51(1):47-52. doi: 10.3103/S106879980801008X
    [15] 吕升, 郭迎清, 孙浩.航空发动机故障诊断装置硬件在环实时仿真平台[J].航空发动机, 2017, 43(3):43-49. http://d.old.wanfangdata.com.cn/Periodical/hkfdj201703010

    LÜ S, GUO Y Q, SUN H.Hardware-in-the-loop real-time simulation platform for aero-engine fault diagnosis device[J].Aero Engine, 2017, 43(3):43-49(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkfdj201703010
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  801
  • HTML全文浏览量:  83
  • PDF下载量:  334
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-31
  • 录用日期:  2019-04-26
  • 网络出版日期:  2019-10-20

目录

    /

    返回文章
    返回
    常见问答