-
摘要:
乘客出行过程中对于热舒适度要求不断提高,对民机客舱的整体热舒适性提出了更加严格的要求。通过对南北飞行的航班实际测量发现,由于受到太阳辐射的影响,客舱内部向阳和背阴两侧温度分布极不均匀,特别是窗户周围,平均温差达到20℃,客舱向阳和背阴两侧的热舒适性相差较大;结合CFD动态仿真,基于实际客舱各区实时测量数据,建立等比例客舱仿真模型,以实际测量的温度和压力数据作为仿真边界条件,再现民机客舱内部温度和热舒适度PMV的分布情况,为定量分析南北飞行航班客舱的热舒适性提供理论依据。
Abstract:The requirement of thermal comfort for passengers is constantly increasing, which puts forward more urgent requirements for the overall thermal comfort of civil aircraft cabin. Based on the actual measurement of flights flying from north to south, it is found that the temperature distribution on both sides of the cockpit is extremely uneven due to the influence of solar radiation, especially around the windows, the average temperature difference reaches 20℃, and the thermal comfort on both sides of the cockpit is quite different. Combined with the CFD dynamic simulation, based on the actual situation, the thermal comfort of the cockpit on both sides of the cockpit is quite different. Real-time measurements of temperature and thermal comfort PMV in the cabin of civil aircraft are reproduced by setting up a simulation model of equal proportion cabin. The simulation boundary condition is temperature and pressure data measured in practice. The theoretical basis for quantitative analysis of thermal comfort in the cabin of north-south flights is provided.
-
表 1 实验测量仪器信息
Table 1. Information of measuring instruments in experiment
测量仪器 测量范围 精度 温湿度压力传感器 30~110 kPa 0.15 kPa Testo热线风速仪 0~10 m/s 0.1 m/s Testo红外线温度计 -30~400℃ 2% 表 2 航班信息
Table 2. Flight information
编号 季节 往返地 航班号 机型 1 春季 北京—厦门 HU7191 B787 2 春季 厦门—北京 HU7192 B787 3 夏季 北京—昆明 HU7211 B787 4 夏季 昆明—北京 HU7212 B787 5 冬季 北京—丽江 CA1469 A319 6 冬季 丽江—北京 CA1470 A319 表 3 乘客1的辐射角系数
Table 3. Radiation angle coefficient of passenger 1
表面p 表面i 辐射类型 辐射角系数Fp-i 乘客1 座舱顶壁面 表面至表面 0.20 乘客1 座舱地板 表面至表面 0.13 乘客1 座舱右侧面 表面至表面 0.29 乘客1 座舱右窗户 表面至表面 0.14 乘客1 座椅 表面至表面 0.14 乘客1 其他乘客 表面至表面 0.10 表 4 乘客2的辐射角系数
Table 4. Radiation angle coefficient of passenger 2
表面p 表面i 辐射类型 辐射角系数Fp-i 乘客2 座舱顶壁面 表面至表面 0.30 乘客2 座舱地板 表面至表面 0.18 乘客2 座舱右侧面 表面至表面 0.08 乘客2 座舱左壁面 表面至表面 0.08 乘客2 座舱右窗户 表面至表面 0.02 乘客2 座舱左窗户 表面至表面 0.03 乘客2 座椅 表面至表面 0.20 乘客2 其他乘客 表面至表面 0.11 表 5 乘客头部PMV左右差值仿真结果
Table 5. Simulation results of left-right difference of passenger head PMV
左右测点 PMV差值 10-1 0.64 9-2 0.56 8-3 0.40 7-4 0.1 6-5 0.02 表 6 乘客胸部PMV左右差值仿真结果
Table 6. Simulation results of left-right difference of passenger chest PMV
左右测点 PMV差值 10-1 0.54 9-2 0.54 8-3 0.44 7-4 0.11 6-5 0.04 -
[1] RANCESCA R D A, BORIS I P, GIUSEPPE R.Notes on the calculation of the PMV index by means of Apps[J].Energy Procedia, 2016, 101:249-256. doi: 10.1016/j.egypro.2016.11.032 [2] HASAN M H, ALSALEEM F, RAFAIE M.Sensitivity study for the PMV thermal comfort model and the use of wearable devices biometric data for metabolic rate estimation[J].Building and Environment, 2016, 110:173-183. doi: 10.1016/j.buildenv.2016.10.007 [3] SHEN C, YU N.Study of thermal comfort in free-running buildings based on adaptive predicted mean vote[C]//International Conference on E-Product E-Service and E-Entertainment.Piscataway, NJ: IEEE Press, 2010: 1-4. [4] MARCEL S, ANDREAS W.A framework for an adaptive thermal heat balance model (ATHB)[J].Building and Environment, 2015, 94:252-262. doi: 10.1016/j.buildenv.2015.08.018 [5] BECK P, ROLLET S, LATOCHA M, et al.TEPC reference measurements at aircraft altitudes during a solar storm[J].Advances in Space Research:The Official Journal of the Committee on Space Research(COSPAR), 2005, 36(9):1627-1633. doi: 10.1016/j.asr.2005.05.035 [6] Paintindia Group.PPG quick-application windshield coating kit available for general aviation[J].Aviation Maintenance, 2010, 60(10):66-68. [7] LV M Y, YAO Z B, ZHANG L C, et al.Effects of solar array on the thermal performance of stratospheric airship[J].Applied Thermal Engineering, 2017, 124:22-33. doi: 10.1016/j.applthermaleng.2017.06.018 [8] BATTISTONI G.The FLUKA code, galactic cosmic ray and solar energetic particle events: From fundamental physics to space radiation and commercial aircraft doses[C]//IEEE Nuclear Science Symposium Conference Record.Piscataway, NJ: IEEE Press, 2008: 1609-1615. [9] 黑赏罡, 姜曙光, 杨骏, 等.Fanger PMV热舒适模型发展过程及适用性分析[J].低温建筑技术, 2017, 39(10):125-128. http://d.old.wanfangdata.com.cn/Periodical/dwjzjs201710034HEI S G, JIANG S G, YANG J, et al.Development and applicability analysis of Fanger PMV thermal comfort model[J].Cryogenic Building Technology, 2017, 39(10):125-128(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/dwjzjs201710034 [10] 杨建忠, 王振斌, 陈希远, 等.飞机座舱温度扰动实验研究[J].科学技术与工程, 2017, 17(31):364-368. doi: 10.3969/j.issn.1671-1815.2017.31.060YANG J Z, ZHANG Z B, CHEN X Y, et al.Experimental study on temperature disturbance in aircraft cockpit[J].Science and Technology and Engineering, 2017, 17(31):364-368(in Chinese). doi: 10.3969/j.issn.1671-1815.2017.31.060 [11] 何良, 吴长水, 李启杰, 等.太阳辐射下乘员舱温度场的数值模拟研究[J].机械强度, 2017, 39(2):479-483. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jxqd201702040HE L, WU C S, LI Q J, et al.Numerical simulation of temperature field in passenger compartment under solar radiation[J].Mechanical Strength, 2017, 39(2):479-483(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jxqd201702040 [12] 郝贵和, 刘永辉, 伍红英.基于ASHRAE模型的客舱表面太阳辐射量分析[J].辽宁工程技术大学学报(自然科学版), 2017, 36(6):645-650. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lngcjsdxxb201706016HAO G H, LIU Y H, WU H Y.Analysis of solar radiation on cabin surface based on ASHRAE model[J].Journal of Liaoning University of Engineering and Technology (Natural Science Edition), 2017, 36(6):645-650(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lngcjsdxxb201706016 [13] SHI G L.Discussions on the application of Fanger's thermal comfort theory[C]//The First International Conference on Building Energy and Environment Proceedings, 2008: 8. [14] 张昭, 唐虎, 成竹.军用飞机实验室气候环境试验项目分析[J].装备环境工程, 2017, 14(10):87-91. http://d.old.wanfangdata.com.cn/Periodical/jscxgy201710017ZHENG Z, TANG H, CHENG Z.Analysis of climate and environment test projects in military aircraft laboratory[J].Equipment Environmental Engineering, 2017, 14(10):87-91(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jscxgy201710017 [15] DUAN P Y, LI H, LIU C C.PMV based hot/cold complaint model for dynamical thermal comfort[C]//International Conference on Manufacturing Science and Technology, 2015, 3: 1185-1188. [16] 杜秀媛.客机座舱喷嘴送风参数优化及热环境评价[D].重庆: 重庆大学, 2017.DU X Y.Optimization of air supply parameters and thermal environment assessment of nozzles in passenger aircraft cockpit[D] Chongqing: Chongqing University, 2017(in Chinese). [17] ISO/TC 159/SC 5.Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria: ISO 7730—2005[S].Geneva: ISO, 2005.