留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

几何不确定性区间分析及鲁棒气动优化设计

宋鑫 郑冠男 杨国伟 姜倩

宋鑫, 郑冠男, 杨国伟, 等 . 几何不确定性区间分析及鲁棒气动优化设计[J]. 北京航空航天大学学报, 2019, 45(11): 2217-2227. doi: 10.13700/j.bh.1001-5965.2019.0077
引用本文: 宋鑫, 郑冠男, 杨国伟, 等 . 几何不确定性区间分析及鲁棒气动优化设计[J]. 北京航空航天大学学报, 2019, 45(11): 2217-2227. doi: 10.13700/j.bh.1001-5965.2019.0077
SONG Xin, ZHENG Guannan, YANG Guowei, et al. Interval analysis for geometric uncertainty and robust aerodynamic optimization design[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(11): 2217-2227. doi: 10.13700/j.bh.1001-5965.2019.0077(in Chinese)
Citation: SONG Xin, ZHENG Guannan, YANG Guowei, et al. Interval analysis for geometric uncertainty and robust aerodynamic optimization design[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(11): 2217-2227. doi: 10.13700/j.bh.1001-5965.2019.0077(in Chinese)

几何不确定性区间分析及鲁棒气动优化设计

doi: 10.13700/j.bh.1001-5965.2019.0077
基金项目: 

国家自然科学基金 11672303

详细信息
    作者简介:

    宋鑫  女, 博士研究生。主要研究方向:气动弹性、优化设计

    郑冠男  男, 博士, 高级工程师。主要研究方向:计算流体力学、气动弹性

    杨国伟  男, 博士, 研究员, 博士生导师。主要研究方向:计算流体力学、气动弹性

    通讯作者:

    郑冠男.E-mail:zhengguannan@imech.ac.cn

  • 中图分类号: V211.3

Interval analysis for geometric uncertainty and robust aerodynamic optimization design

Funds: 

National Natural Science Foundation of China 11672303

More Information
  • 摘要:

    不确定性因素会导致飞行器偏离预先设计的气动性能,造成气动性能下降甚至产生严重的后果。针对工程中无法给出准确的几何不确定性概率分布以及跨声速条件下非线性气动问题,对几何不确定性的非概率参数化建模进行了研究,并结合Kriging模型及最优化方法建立了快速非线性区间分析方法。采用该方法对对称翼型进行不确定性分析,获得了气动性能参数的定量变化区间。在区间不确定性分析基础上建立了鲁棒优化设计流程。基于区间序关系及区间可能度转换模型将单目标区间不确定性优化问题转化为多目标确定性优化问题,并采用基于Pareto熵的自适应多目标粒子群算法对优化问题进行寻优。考虑几何不确定性以及升力、力矩、面积约束,以阻力性能为目标对超临界翼型进行了鲁棒优化设计。与确定性优化设计结果对比表明,确定性优化设计在不确定性因素的影响下易失效,而鲁棒设计可得到更安全可靠的结果。

     

  • 图 1  FFD方法及DFFD方法控制翼型变形

    Figure 1.  Airfoil deformations controlled by FFD and DFFD methods

    图 2  NACA0012翼型计算与试验压力分布比较

    Figure 2.  Comparison of pressure distribution between computation and experiment for NACA0012 airfoil

    图 3  Kriging模型阻力系数相对误差

    Figure 3.  Drag relative coefficient errors of Kriging models

    图 4  直接优化、Kriging模型优化与蒙特卡罗方法结果比较

    Figure 4.  Comparison of results among direct optimization, Kriging model optimization and Monte Carle method

    图 5  阻力系数变化区间上下界对应的翼型及压力分布

    Figure 5.  Airfoils and pressure distribution corresponding to upper and lower bounds of drag coefficient variation interval

    图 6  RAE2822翼型计算与试验压力分布比较

    Figure 6.  Comparison of pressure distribution between computation and experiment for RAE2822 airfoil

    图 7  优化后翼型对比

    Figure 7.  Comparsion of optimized airfoils

    图 8  优化后翼型压力分布对比

    Figure 8.  Pressure distribution comparison of optimized airfoils

    图 9  考虑几何不确定性的鲁棒优化设计流程

    Figure 9.  Robust optimization design process considering geometric uncertainties

    图 10  基于Pareto熵的多目标粒子群算法

    Figure 10.  Multi-objective particle swarm algorithm based on Pareto entropy

    图 11  直接操作点及FFD控制体

    Figure 11.  Pilot points and FFD control body

    图 12  多目标鲁棒优化的Pareto解集

    Figure 12.  Pareto set of multi-objective robust optimization

    图 13  优化所得最优翼型及压力分布比较

    Figure 13.  Optimized airfoils and pressure distribution comparison

    图 14  目标及约束区间上下界对应的翼型及压力分布

    Figure 14.  Airfoils and pressure distribution corresponding to upper and lower bounds of objective and constraint intervals

    图 15  不确定分析采样样本的阻力系数、力矩系数及面积对比

    Figure 15.  Drag coefficient, moment coefficient and area comparison of samples for uncertainty analysis

    表  1  直接操作点x方向位置

    Table  1.   Position of pilot points in x direction

    序号 x/c
    1 0
    2 0.077
    3 0.214
    4 0.377
    5 0.571
    6 0.777
    7 1.0
    下载: 导出CSV

    表  2  3种方法的分析结果、误差、CFD计算次数、计算时间比较

    Table  2.   Comparison of analysis results, errors, CFD calculation times and computing time among three methods

    方法 最大阻力系数 最大阻力系数相对误差/% 最小阻力系数 最小阻力系数相对误差/% CFD计算次数 并行计算时间/min
    直接优化 0.0651303 0.0452392 800 500
    Kriging模型1 0.0620658 -4.70 0.0433786 -4.10 20 25
    Kriging模型2 0.06480712 -0.49 0.0457063 1.03 27 200
    下载: 导出CSV

    表  3  RAE2822翼型及优化翼型的计算结果

    Table  3.   Computing results of RAE2822 and optimized airfoils

    翼型 CD α/ (°) CL CM Aa
    RAE2822 0.02112 2.75377 0.82489 -0.1023 0.07787
    优化翼型 0.01354 2.84263 0.82449 -0.0916 0.07804
    下载: 导出CSV

    表  4  优化翼型与其他文献结果对比

    Table  4.   Comparison of optimization results between optimized airfoil and other works

    翼型 设计变量数目 优化后阻力系数减小
    优化翼型 12 0.00758
    Amoignon-FFD[19] 11 0.00688
    Amoignon-RBF[19] 15 0.00754
    Anderson[20] 14 0.0072
    Poole[21] 10 0.00813
    下载: 导出CSV

    表  5  优化结果比较

    Table  5.   Optimization result comparison

    翼型 CD fC fw CL CM Aa
    RAE2822翼型 0.021127 0.033261 0.015527 0.824888 -0.102279 0.077873
    确定性优化最优翼型 0.013546 0.024063 0.010529 0.824487 -0.091623 0.078044
    鲁棒优化最优翼型 0.015634 0.016627 0.002096 0.823707 -0.083295 0.082126
    下载: 导出CSV
  • [1] 宋述芳, 吕震宙, 张伟伟, 等.机翼气动弹性的随机不确定性分析研究[J].振动工程学报, 2009, 22(3):228-231. http://d.old.wanfangdata.com.cn/Periodical/zdgcxb200903002

    SONG S F, LV Z Z, ZHANG W W, et al.Random uncertainty of aeroelastic system[J].Journal of Vibration Engineering, 2009, 22(3):228-231(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/zdgcxb200903002
    [2] 李焦赞, 高正红.气动设计问题中确定性优化与稳健优化的对比研究[J].航空计算技术, 2010, 40(2):28-31. doi: 10.3969/j.issn.1671-654X.2010.02.008

    LI J Z, GAO Z H.Comparison computation of deterministic optimization and robust optimization in aerodynamic design[J].Aeronautical Computing Technique, 2010, 40(2):28-31(in Chinese). doi: 10.3969/j.issn.1671-654X.2010.02.008
    [3] BAE H R, GRANDHI R, CANFIELD R.Reliability-based design optimization under imprecise uncertainty: AIAA-2005-2069[R].Reston: AIAA, 2005. https://www.researchgate.net/publication/268475841_Reliability-Based_Design_Optimization_under_Imprecise_Uncertainty
    [4] 徐明, 李建波, 彭名华, 等.基于不确定性的旋翼转速优化直升机参数设计[J].航空学报, 2016, 37(7):2170-2179. http://d.old.wanfangdata.com.cn/Periodical/hkxb201607011

    XU M, LI J B, PENG M H, et al.Parameter design of helicopter with optimum speed rotor based on uncertainty optimization[J].Acta Aeronautica et Astronautica Sinica, 2016, 37(7):2170-2179(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb201607011
    [5] SALEHI S, RAISEE M, CERVANTES M J, et al.On the flow field and performance of a centrifugal pump under operational and geometrical uncertainties[J].Applied Mathematical Modelling, 2018, 61:540-560. doi: 10.1016/j.apm.2018.05.008
    [6] 邬晓敬, 张伟伟, 宋述芳, 等.翼型跨声速气动特性的不确定性及全局灵敏度分析[J].力学学报, 2015, 47(4):587-595. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxxb201504005

    WU X J, ZHANG W W, SONG S F, et al.Uncertainty quantification and global sensitivity analysis of transonic aerodynamics about airfoil[J].Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(4):587-595(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxxb201504005
    [7] 戴玉婷, 杨超.考虑随机型不确定性的浸入式颤振求解方法[J].航空学报, 2014, 35(8):2182-2189. http://d.old.wanfangdata.com.cn/Periodical/hkxb201408011

    DAI Y T, YANG C.Intrusive flutter solutions with stochastic uncertainty[J].Acta Aeronautica et Astronautica Sinica, 2014, 35(8):2182-2189(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb201408011
    [8] PAPADIMITRIOU D I, PAPADIMITRIOU C.Aerodynamic shape optimization for minimum robust drag and lift reliability constraint[J].Aerospace Science and Technology, 2016, 55:24-33. doi: 10.1016/j.ast.2016.05.005
    [9] ELISHAKOFF I. Discussion on:A non-probabilistic concept of reliability[J].Structural Safety, 1995, 17(3):195-199. doi: 10.1016/0167-4730(95)00010-2
    [10] 屈小章, 刘桂萍, 韩旭, 等.基于区间的风机系统翼型气动性能不确定性优化[J].中国科学:技术科学, 2017, 47(9):955-964. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-ce201709006

    QU X Z, LIU G P, HAN X, et al.Uncertain optimum design of aerodynamic performance of fan with interval uncertainty[J].SCIENTIA SINICA Technologica, 2017, 47(9):955-964(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-ce201709006
    [11] ZHENG Y N, QIU Z P.Uncertainty propagation in aerodynamic forces and heating analysis for hypersonic vehicles with uncertain-but-bounded geometric parameters[J].Aerospace Science and Technology, 2018, 77:11-24 doi: 10.1016/j.ast.2018.02.028
    [12] 张军红, 韩景龙.含区间不确定性参数的机翼气动弹性优化[J].振动工程学报, 2011, 24(5):461-467. doi: 10.3969/j.issn.1004-4523.2011.05.002

    ZHANG J H, HAN J L.Aeroelasticity optimization of wing including interval uncertainty parameters[J].Journal of Vibration Engineering, 2011, 24(5):461-467(in Chinese). doi: 10.3969/j.issn.1004-4523.2011.05.002
    [13] PISARONI M, LEYLAND P, NOBILE F.A multi level Monte Carlo algorithm for the treatment of geometrical and operational uncertainties in internal and external aerodynamics: AIAA-2016-4398[R].Reston: AIAA, 2016. https://www.researchgate.net/publication/303902617_A_Multi_Level_Monte_Carlo_Algorithm_for_the_Treatment_of_Geometrical_and_Operational_Uncertainties_in_Internal_and_External_Aerodynamics
    [14] 张德虎, 席胜, 田鼎.典型翼型参数化方法的翼型外形控制能力评估[J].航空工程进展, 2014, 5(3):281-295. doi: 10.3969/j.issn.1674-8190.2014.03.003

    ZHANG D H, XI S, TIAN D.Geometry control ability evaluation of classical airfoil parametric methods[J].Advances in Aeronautical Science and Engineering, 2014, 5(3):281-295(in Chinese). doi: 10.3969/j.issn.1674-8190.2014.03.003
    [15] 陈颂, 白俊强, 孙智伟, 等.基于DFFD技术的翼型气动优化设计[J].航空学报, 2014, 35(3):695-705. http://d.old.wanfangdata.com.cn/Periodical/hkxb201403010

    CHEN S, BAI J Q, SUN Z W, et al.Aerodynamic optimization design of airfoil using DFFD technique[J].Acta Aeronautica et Astronautica Sinica, 2014, 35(3):695-705(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb201403010
    [16] 姜潮, 韩旭, 谢慧超.区间不确定性优化设计理论与方法[M].北京:科学出版社, 2017:6-40.

    JIANG C, HAN X, XIE H C.Interval uncertain optimization design:theory and methods[M].Beijing:Science Press, 2017:6-40(in Chinese).
    [17] 韩忠华.Kriging模型及代理优化算法研究进展[J].航空学报, 2016, 37(11):3197-3225. http://d.old.wanfangdata.com.cn/Periodical/hkxb201611001

    HAN Z H.Kriging surrogate model and its application to design optimization:A review of recent progress[J].Acta Aeronautica et Astronautica Sinica, 2016, 37(11):3197-3225(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb201611001
    [18] 郑冠男, 邓守春, 韩同来, 等.基于混合网格Navier-Stokes方程的并行隐式计算方法研究[J].应用力学学报, 2011, 28(3):211-218. http://d.old.wanfangdata.com.cn/Periodical/yylxxb201103001

    ZHENG G N, DENG S C, HAN T L, et al.An implicit parallel computing method based on the Navier-Stokes equations with hybrid grids[J].Chinese Journal of Applied Mechanics, 2011, 28(3):211-218(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/yylxxb201103001
    [19] AMOIGNON O, HRADIL J, NAVRATIL J.Study of parameterizations in the project CEDESA: AIAA-2014-0570[R].Reston: AIAA, 2014.
    [20] ANDERSON G R, NEMEC M, AFTOSMIS M J.Aerodynamic shape optimization benchmarks with error control and automatic parameterization: AIAA-2015-1719[R].Reston: AIAA, 2015.
    [21] POOLE D J, ALLEN C B, RENDALL T.Control point-based aerodynamic shape optimization applied to AIAA ADODG test cases: AIAA-2015-1947[R].Reston: AIAA, 2015.
    [22] 胡旺, YEN G G, 张鑫.基于Pareto熵的多目标粒子群优化算法[J].软件学报, 2014, 25(5):1025-1050. http://d.old.wanfangdata.com.cn/Periodical/rjxb201405009

    HU W, YEN G G, ZHANG X.Multiobjective particle swarm optimization based on pareto entropy[J].Journal of Software, 2014, 25(5):1025-1050(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/rjxb201405009
  • 加载中
图(15) / 表(5)
计量
  • 文章访问数:  938
  • HTML全文浏览量:  162
  • PDF下载量:  606
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-04
  • 录用日期:  2019-06-21
  • 网络出版日期:  2019-11-20

目录

    /

    返回文章
    返回
    常见问答