Interval analysis for geometric uncertainty and robust aerodynamic optimization design
-
摘要:
不确定性因素会导致飞行器偏离预先设计的气动性能,造成气动性能下降甚至产生严重的后果。针对工程中无法给出准确的几何不确定性概率分布以及跨声速条件下非线性气动问题,对几何不确定性的非概率参数化建模进行了研究,并结合Kriging模型及最优化方法建立了快速非线性区间分析方法。采用该方法对对称翼型进行不确定性分析,获得了气动性能参数的定量变化区间。在区间不确定性分析基础上建立了鲁棒优化设计流程。基于区间序关系及区间可能度转换模型将单目标区间不确定性优化问题转化为多目标确定性优化问题,并采用基于Pareto熵的自适应多目标粒子群算法对优化问题进行寻优。考虑几何不确定性以及升力、力矩、面积约束,以阻力性能为目标对超临界翼型进行了鲁棒优化设计。与确定性优化设计结果对比表明,确定性优化设计在不确定性因素的影响下易失效,而鲁棒设计可得到更安全可靠的结果。
-
关键词:
- 几何不确定性 /
- 非线性区间分析 /
- 直接操作自由变形(DFFD) /
- 气动优化设计 /
- 鲁棒优化设计 /
- 自适应多目标粒子群算法 /
- Kriging模型
Abstract:Uncertainties will make aircraft deviate from the designed aerodynamic performance, resulting in the decrease in aerodynamic performance and even destruction. Due to the problem that the probability distribution of geometric uncertainty cannot be given in engineering and nonlinear aerodynamic problem in transonic flows, the non-probabilistic parametric modeling of geometric uncertainty is studied, and the fast nonlinear interval analysis method is established in combination with Kriging model and optimization method. The effects of geometric uncertainties on a symmetric airfoil are analyzed using the above method, and the quantitative variation range of aerodynamic performance is obtained. Based on interval uncertainty analysis, a robust optimization design process is established. The single-objective interval uncertainty optimization problem was transformed into deterministic multi-objective optimization problem based on the order relation and possibility degree model of interval number, and the optimization problem was solved by adaptive multi-objective particle swarm optimization which is based on Pareto entropy. The robust optimization design is implemented for the supercritical airfoil with the drag objective as well as lift, moment and area constraints under geometric uncertainties. The results compared with deterministic optimization design show that deterministic design is prone to failure under the influence of uncertainties, while the robust design is more secure and reliable.
-
表 1 直接操作点x方向位置
Table 1. Position of pilot points in x direction
序号 x/c 1 0 2 0.077 3 0.214 4 0.377 5 0.571 6 0.777 7 1.0 表 2 3种方法的分析结果、误差、CFD计算次数、计算时间比较
Table 2. Comparison of analysis results, errors, CFD calculation times and computing time among three methods
方法 最大阻力系数 最大阻力系数相对误差/% 最小阻力系数 最小阻力系数相对误差/% CFD计算次数 并行计算时间/min 直接优化 0.0651303 0.0452392 800 500 Kriging模型1 0.0620658 -4.70 0.0433786 -4.10 20 25 Kriging模型2 0.06480712 -0.49 0.0457063 1.03 27 200 表 3 RAE2822翼型及优化翼型的计算结果
Table 3. Computing results of RAE2822 and optimized airfoils
翼型 CD α/ (°) CL CM Aa RAE2822 0.02112 2.75377 0.82489 -0.1023 0.07787 优化翼型 0.01354 2.84263 0.82449 -0.0916 0.07804 表 4 优化翼型与其他文献结果对比
Table 4. Comparison of optimization results between optimized airfoil and other works
表 5 优化结果比较
Table 5. Optimization result comparison
翼型 CD fC fw CL CM Aa RAE2822翼型 0.021127 0.033261 0.015527 0.824888 -0.102279 0.077873 确定性优化最优翼型 0.013546 0.024063 0.010529 0.824487 -0.091623 0.078044 鲁棒优化最优翼型 0.015634 0.016627 0.002096 0.823707 -0.083295 0.082126 -
[1] 宋述芳, 吕震宙, 张伟伟, 等.机翼气动弹性的随机不确定性分析研究[J].振动工程学报, 2009, 22(3):228-231. http://d.old.wanfangdata.com.cn/Periodical/zdgcxb200903002SONG S F, LV Z Z, ZHANG W W, et al.Random uncertainty of aeroelastic system[J].Journal of Vibration Engineering, 2009, 22(3):228-231(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/zdgcxb200903002 [2] 李焦赞, 高正红.气动设计问题中确定性优化与稳健优化的对比研究[J].航空计算技术, 2010, 40(2):28-31. doi: 10.3969/j.issn.1671-654X.2010.02.008LI J Z, GAO Z H.Comparison computation of deterministic optimization and robust optimization in aerodynamic design[J].Aeronautical Computing Technique, 2010, 40(2):28-31(in Chinese). doi: 10.3969/j.issn.1671-654X.2010.02.008 [3] BAE H R, GRANDHI R, CANFIELD R.Reliability-based design optimization under imprecise uncertainty: AIAA-2005-2069[R].Reston: AIAA, 2005. https://www.researchgate.net/publication/268475841_Reliability-Based_Design_Optimization_under_Imprecise_Uncertainty [4] 徐明, 李建波, 彭名华, 等.基于不确定性的旋翼转速优化直升机参数设计[J].航空学报, 2016, 37(7):2170-2179. http://d.old.wanfangdata.com.cn/Periodical/hkxb201607011XU M, LI J B, PENG M H, et al.Parameter design of helicopter with optimum speed rotor based on uncertainty optimization[J].Acta Aeronautica et Astronautica Sinica, 2016, 37(7):2170-2179(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb201607011 [5] SALEHI S, RAISEE M, CERVANTES M J, et al.On the flow field and performance of a centrifugal pump under operational and geometrical uncertainties[J].Applied Mathematical Modelling, 2018, 61:540-560. doi: 10.1016/j.apm.2018.05.008 [6] 邬晓敬, 张伟伟, 宋述芳, 等.翼型跨声速气动特性的不确定性及全局灵敏度分析[J].力学学报, 2015, 47(4):587-595. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxxb201504005WU X J, ZHANG W W, SONG S F, et al.Uncertainty quantification and global sensitivity analysis of transonic aerodynamics about airfoil[J].Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(4):587-595(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=lxxb201504005 [7] 戴玉婷, 杨超.考虑随机型不确定性的浸入式颤振求解方法[J].航空学报, 2014, 35(8):2182-2189. http://d.old.wanfangdata.com.cn/Periodical/hkxb201408011DAI Y T, YANG C.Intrusive flutter solutions with stochastic uncertainty[J].Acta Aeronautica et Astronautica Sinica, 2014, 35(8):2182-2189(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb201408011 [8] PAPADIMITRIOU D I, PAPADIMITRIOU C.Aerodynamic shape optimization for minimum robust drag and lift reliability constraint[J].Aerospace Science and Technology, 2016, 55:24-33. doi: 10.1016/j.ast.2016.05.005 [9] ELISHAKOFF I. Discussion on:A non-probabilistic concept of reliability[J].Structural Safety, 1995, 17(3):195-199. doi: 10.1016/0167-4730(95)00010-2 [10] 屈小章, 刘桂萍, 韩旭, 等.基于区间的风机系统翼型气动性能不确定性优化[J].中国科学:技术科学, 2017, 47(9):955-964. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-ce201709006QU X Z, LIU G P, HAN X, et al.Uncertain optimum design of aerodynamic performance of fan with interval uncertainty[J].SCIENTIA SINICA Technologica, 2017, 47(9):955-964(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-ce201709006 [11] ZHENG Y N, QIU Z P.Uncertainty propagation in aerodynamic forces and heating analysis for hypersonic vehicles with uncertain-but-bounded geometric parameters[J].Aerospace Science and Technology, 2018, 77:11-24 doi: 10.1016/j.ast.2018.02.028 [12] 张军红, 韩景龙.含区间不确定性参数的机翼气动弹性优化[J].振动工程学报, 2011, 24(5):461-467. doi: 10.3969/j.issn.1004-4523.2011.05.002ZHANG J H, HAN J L.Aeroelasticity optimization of wing including interval uncertainty parameters[J].Journal of Vibration Engineering, 2011, 24(5):461-467(in Chinese). doi: 10.3969/j.issn.1004-4523.2011.05.002 [13] PISARONI M, LEYLAND P, NOBILE F.A multi level Monte Carlo algorithm for the treatment of geometrical and operational uncertainties in internal and external aerodynamics: AIAA-2016-4398[R].Reston: AIAA, 2016. https://www.researchgate.net/publication/303902617_A_Multi_Level_Monte_Carlo_Algorithm_for_the_Treatment_of_Geometrical_and_Operational_Uncertainties_in_Internal_and_External_Aerodynamics [14] 张德虎, 席胜, 田鼎.典型翼型参数化方法的翼型外形控制能力评估[J].航空工程进展, 2014, 5(3):281-295. doi: 10.3969/j.issn.1674-8190.2014.03.003ZHANG D H, XI S, TIAN D.Geometry control ability evaluation of classical airfoil parametric methods[J].Advances in Aeronautical Science and Engineering, 2014, 5(3):281-295(in Chinese). doi: 10.3969/j.issn.1674-8190.2014.03.003 [15] 陈颂, 白俊强, 孙智伟, 等.基于DFFD技术的翼型气动优化设计[J].航空学报, 2014, 35(3):695-705. http://d.old.wanfangdata.com.cn/Periodical/hkxb201403010CHEN S, BAI J Q, SUN Z W, et al.Aerodynamic optimization design of airfoil using DFFD technique[J].Acta Aeronautica et Astronautica Sinica, 2014, 35(3):695-705(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb201403010 [16] 姜潮, 韩旭, 谢慧超.区间不确定性优化设计理论与方法[M].北京:科学出版社, 2017:6-40.JIANG C, HAN X, XIE H C.Interval uncertain optimization design:theory and methods[M].Beijing:Science Press, 2017:6-40(in Chinese). [17] 韩忠华.Kriging模型及代理优化算法研究进展[J].航空学报, 2016, 37(11):3197-3225. http://d.old.wanfangdata.com.cn/Periodical/hkxb201611001HAN Z H.Kriging surrogate model and its application to design optimization:A review of recent progress[J].Acta Aeronautica et Astronautica Sinica, 2016, 37(11):3197-3225(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb201611001 [18] 郑冠男, 邓守春, 韩同来, 等.基于混合网格Navier-Stokes方程的并行隐式计算方法研究[J].应用力学学报, 2011, 28(3):211-218. http://d.old.wanfangdata.com.cn/Periodical/yylxxb201103001ZHENG G N, DENG S C, HAN T L, et al.An implicit parallel computing method based on the Navier-Stokes equations with hybrid grids[J].Chinese Journal of Applied Mechanics, 2011, 28(3):211-218(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/yylxxb201103001 [19] AMOIGNON O, HRADIL J, NAVRATIL J.Study of parameterizations in the project CEDESA: AIAA-2014-0570[R].Reston: AIAA, 2014. [20] ANDERSON G R, NEMEC M, AFTOSMIS M J.Aerodynamic shape optimization benchmarks with error control and automatic parameterization: AIAA-2015-1719[R].Reston: AIAA, 2015. [21] POOLE D J, ALLEN C B, RENDALL T.Control point-based aerodynamic shape optimization applied to AIAA ADODG test cases: AIAA-2015-1947[R].Reston: AIAA, 2015. [22] 胡旺, YEN G G, 张鑫.基于Pareto熵的多目标粒子群优化算法[J].软件学报, 2014, 25(5):1025-1050. http://d.old.wanfangdata.com.cn/Periodical/rjxb201405009HU W, YEN G G, ZHANG X.Multiobjective particle swarm optimization based on pareto entropy[J].Journal of Software, 2014, 25(5):1025-1050(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/rjxb201405009