-
摘要:
发动机短舱泄压门的设计会影响到短舱的安全性,泄压是一个动态变化过程,与舱内外压力、外界气流马赫数及泄压门结构有关。基于Modelica语言建立了短舱泄压过程零维瞬态仿真数学模型,并通过计算流体力学(CFD)方法得到不同开启角度下所需泄压门排放质量流量和力矩系数,并将这些系数代入零维瞬态仿真数学模型,得到了短舱泄压过程中舱内压力、泄压门开启角度等关键参数随时间的变化关系,分析了泄压门开启舱内压力阈值及最大开启角度对泄压过程的影响。研究结果显示,降低泄压门开启舱内压力阈值会使泄压过程到达平衡阶段时间减小,但是对平衡阶段舱内压力和往复摆动角度/幅度无影响。适当降低最大开启角度可有效降低泄压平衡阶段往复摆动角度/幅度,而对初始阶段的泄压速率和平衡阶段的短舱内部压力基本无影响,但是随着最大开启角度进一步降低,则会导致泄压速率下降,并使平衡阶段短舱内部压力升高。
-
关键词:
- 发动机短舱 /
- 泄压过程 /
- 瞬态模型 /
- 泄压门 /
- 计算流体力学(CFD)
Abstract:The design of the engine nacelle pressure relief door will affect the safety of the nacelle. The pressure relief is a dynamic process, which is related to the pressure inside and outside the nacelle, the freestream Mach number and the structure of the pressure relief door. Based on the Modelica language, a zero-dimensional transient simulation mathematical model of the nacelle pressure relief process was established, and the pressure relief door (PRD) discharge and moment coefficient under different opening angles were calculated via computational fluid dynamics (CFD). Then those coefficients were substituted into the zero-dimensional transient simulation model, and the variation relationship of key parameters such as the plenum compartment pressure and opening angle of the PRD with time during the pressure relief process is obtained. The influence of the plenum compartment pressure threshold and the maximum opening angle of the PRD on the pressure relief process was analyzed. The study results show that reducing the plenum compartment pressure threshold for PRD opening will reduce the time required for the pressure relief process reaching to the equilibrium stage, but has no effect on the plenum compartment pressure and reciprocating swing angle/amplitude at equilibrium stage; properly reducing the maximum opening angle can effectively reduce the PRD reciprocating swing angle/amplitude in the equilibrium stage, and has no effect on the pressure relief rate in the initial stage and the plenum compartment pressure in the equilibrium stage, but excessive reduction of the maximum opening angle will decrease the pressure relief rate in the initial stage and increase plenum compartment pressure in the equilibrium stage.
-
-
[1] 中国民用航空局.中国民用航空规章第25部运输类飞机适航标准: CCAR-25-R3[S].北京: 中国民用航空局, 2001.Civil Aviation Administration of China.Chinese civil aviation regulations Part 25 airworthiness standards for transport category aircraft: CCAR-25-R3[S]. Beijing: Civil Aviation Administration of China, 2001(in Chinese). [2] VICK A R. An investigation of discharge and thrust characteristics of flapped outlets for stream Mach numbers from 0.40 to 1.30: NACA TN4007[R]. Washington, D.C.: NACA, 1957. [3] PRATT P R, WATTERSON J K, BENARD E.Computational and experimental studies of pressure relief doors in ventilated nacelle compartments[J]. Investigative Ophthalmology & Visual Science, 2003, 28(10):1678-1686. [4] PRATT P R, WATTERSON J K, BENARD E, et al.Performance of a flapped duct exhausting into a compressible external flow[C]//CD-ROM Proceedings of 24th International Congress of the Aeronautical Sciences.Yokohama: Optimage Ltd., 2004, 1: 1-9. [5] BENARD E, WATTERSON J K, GAULT R, et al.Review and experimental survey of flapped exhaust performance[J]. Journal of Aircraft, 2008, 45(1):349-352. doi: 10.2514/1.34238 [6] VEDESHKIN G, DUBOVITSKIY A, BONDARENKO D, et al.Experimental investigations of hydraulic devices performance in aviation engine compartment[C]//28th Congress of the International Council of the Aeronautical Sciences 2012.Brisbane: Curran Associates, Inc., 2013, 2: 1692-1700. [7] SCHOTT T. Computational analysis of aircraft pressure relief doors[D]. Colorado: Colorado State University, 2016. [8] 郁成德.增压舱突然泄压载荷计算[J].民用飞机设计与研究, 1997(2):43-49. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700385930YU C D.Calculation of pressurized cabin pressure relief load[J]. Civil Aircraft Design & Research, 1997(2):43-49(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700385930 [9] 刘华源, 屠毅.民用飞机泄压载荷影响因素研究[J].科技视界, 2016(16):30-31. doi: 10.3969/j.issn.2095-2457.2016.16.016LIU H Y, TU Y.Numerical simulation of decompression in pressurized cabin of civil aircraft[J]. Science & Technology Vision, 2016(16):30-31(in Chinese). doi: 10.3969/j.issn.2095-2457.2016.16.016 [10] 赵建军, 丁建完, 周凡利, 等.Modelica语言及其多领域统一建模与仿真机理[J].系统仿真学报, 2006, 18(2):570-573. http://d.old.wanfangdata.com.cn/Periodical/xtfzxb2006z2162ZHAO J J, DING J W, ZHOU F L, et al.Modelica and its mechanism of multi-domain unified modeling and simulation[J]. Journal of System Simulation, 2006, 18(2):570-573(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/xtfzxb2006z2162 [11] TILLER M. Introduction to physical modeling with Modelica[M]. Boston: Kluwer Academic, 2001. [12] LOVERA M, PULECCHI T.Object-oriented modelling for spacecraft dynamics: A case study[C]//Proceedings of the 2006 IEEE Conference on Computer Aided Control Systems Design.Piscataway, NJ: IEEE Press, 2006: 1898-1903. [13] CASELLA F, LOVERA M.High-accuracy orbital dynamics simulation through keplerian and equinoctial parameters[C]//Proceedings of the 6th International Modelica Conference.Bielefeld: The Modelica Association, 2008, 2: 505-514. [14] 张宝坤, 赵建军, 刘伟.关于飞机液压负载功率系统优化设计研究[J].计算机仿真, 2017, 34(5):82-87. doi: 10.3969/j.issn.1006-9348.2017.05.018ZHANG B K, ZHAO J J, LIU W.Research on aircraft hydraulic load power system optimization design[J]. Computer Simulation, 2017, 34(5):82-87(in Chinese). doi: 10.3969/j.issn.1006-9348.2017.05.018 [15] 李志为, 赵洪山.基于Modelica语言的电力系统建模与仿真[J].华东电力, 2012(3):425-428.LI Z W, ZHAO H S.Modeling and simulation of power system based on Modelica[J]. East China Electric Power, 2012(3):425-428(in Chinese). [16] 程雷, 秦东晨, 王耀凯, 等.基于Modelica的纯电动客车建模仿真研究[J].汽车技术, 2017(8):43-48. doi: 10.3969/j.issn.1000-3703.2017.08.008CHENG L, QING D C, WANG Y K, et al.Modeling and simulation of pure electric bus based on Modelica[J]. Automobile Technology, 2017(8):43-48(in Chinese). doi: 10.3969/j.issn.1000-3703.2017.08.008 [17] RUBIO M, URQUIA A, GONZÁLEZ L, et al.FuelCellLib-a modelica library for modeling of fuel cells[C]//Proceedings of the 4th International Modelica Conference.Hamburg: The Modelica Association, 2005, 1: 75-83. [18] 孟亦飞, 蒋军成.化工装置泄漏扩散定量风险分析[J].石油化工高等学校学报, 2008, 21(4):50-54. doi: 10.3969/j.issn.1006-396X.2008.04.013MENG Y F, JIANG J C.Calculation of high-pressure gas tank leakage parameters[J]. Industrial Safety and Environmental Protection, 2008, 21(4):50-54(in Chinese). doi: 10.3969/j.issn.1006-396X.2008.04.013 [19] 范钦珊.理论力学[M].北京:高等教育出版社, 2000:264-265.FAN Q S.Theoretical mechanics[M]. Beijing:Higher Education Press, 2000:264-265(in Chinese).