留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

两相控温型储液器进出流量的瞬态数值模拟

孟庆亮 张焕冬 赵振明 赵石磊 杨涛

孟庆亮, 张焕冬, 赵振明, 等 . 两相控温型储液器进出流量的瞬态数值模拟[J]. 北京航空航天大学学报, 2019, 45(11): 2160-2169. doi: 10.13700/j.bh.1001-5965.2019.0094
引用本文: 孟庆亮, 张焕冬, 赵振明, 等 . 两相控温型储液器进出流量的瞬态数值模拟[J]. 北京航空航天大学学报, 2019, 45(11): 2160-2169. doi: 10.13700/j.bh.1001-5965.2019.0094
MENG Qingliang, ZHANG Huandong, ZHAO Zhenming, et al. Transient numerical simulations of flow rate into and out of two-phase temperature control accumulator[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(11): 2160-2169. doi: 10.13700/j.bh.1001-5965.2019.0094(in Chinese)
Citation: MENG Qingliang, ZHANG Huandong, ZHAO Zhenming, et al. Transient numerical simulations of flow rate into and out of two-phase temperature control accumulator[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(11): 2160-2169. doi: 10.13700/j.bh.1001-5965.2019.0094(in Chinese)

两相控温型储液器进出流量的瞬态数值模拟

doi: 10.13700/j.bh.1001-5965.2019.0094
基金项目: 

国家自然科学基金 51806010

详细信息
    作者简介:

    孟庆亮  男, 博士。主要研究方向:微重力下两相流动与传热

    赵振明  男, 博士。主要研究方向:遥感器热设计、两相流换热

    通讯作者:

    孟庆亮.E-mail:qlmeng@mail.ustc.edu.cn

  • 中图分类号: V416;TK124

Transient numerical simulations of flow rate into and out of two-phase temperature control accumulator

Funds: 

National Natural Science Foundation of China 51806010

More Information
  • 摘要:

    两相控温型储液器是泵驱两相流体回路(MPTL)系统中的一个重要部件,承担着工质存储、供给、气液分离及精密控温的作用。采用Navier-Stokes方程建立了MPTL系统瞬态模拟的仿真模型,可用于研究热源功率变化时储液器与主回路的动态传热和传质特性。通过仿真与试验对比发现,数值模型的流量误差在±10%以内,验证了模型的有效性和准确度。数值模拟结果表明:热源开关机时,储液器与主回路发生工质交换,气液两相的温度和压力受到影响,系统的流阻也受到影响;随着热源功率的增加,工质交换速率和交换总量随之增加,储液器内气液两相的温度和压力变化趋势随之增大。该模型可用于研究不同工作条件下的流量、温度和干度的变化特性,指导MPTL设计,并在系统搭建前预测系统特性。

     

  • 图 1  MPTL系统组成示意图

    Figure 1.  Schematic of MPTL system composition

    图 2  两相控温型储液器示意图

    Figure 2.  Schematic of two-phase temperature control accumulator

    图 3  主回路网格划分示意图

    Figure 3.  Schematic of mesh generation for main loop

    图 4  储液器与主回路耦合处网格划分示意图

    Figure 4.  Schematic of mesh generation for coupling between accumulator and main loop

    图 5  MPTL系统实物图

    Figure 5.  Photo of MPTL system

    图 6  储液器与主回路工质交换流量仿真与试验结果对比

    Figure 6.  Comparison between simulation and test results of mass flow rate exchange between accumulator and main loop

    图 7  热源开机时储液器内气液两相温度和压力随时间的变化曲线

    Figure 7.  Temporal evolution of temperature and pressure of two-phase fluid in accumulator in response to heat load increase

    图 8  热源关机时储液器内气液两相温度和压力随时间的变化曲线

    Figure 8.  Temporal evolution of temperature and pressure of two-phase fluid in accumulator in response to heat load decrease

    图 9  系统流量随距离变化趋势

    Figure 9.  Profile of system flow rate along flow distance

    图 10  系统流阻随时间的变化趋势

    Figure 10.  Temporal evolution of system flow resistance

    图 11  冷板内流体温度和干度变化曲线

    Figure 11.  Temporal evolution of temperature and quality of working fluid in cold plates

    图 12  不同功率下储液器进出流量随时间的变化趋势

    Figure 12.  Temporal evolution of flow rate into and out of accumulator under different powers

    图 13  不同功率下储液器气液温度和压力的变化曲线

    Figure 13.  Temporal evolution of temperature and pressure of gas and liquid phase in accumulator under different powers

    表  1  模型与试验参数

    Table  1.   Parameters of model and test

    组件 描述
    机械泵 流量:1 g/s
    储液器 体积:200 mL;控温温度:(20±0.3)℃;加热功率:10 W
    预热器 材料:不锈钢;加热功率:50 W;数量:2个
    冷板 材料:不锈钢;数量:4个
    冷凝器 温度:(10±0.5)℃
    管路 材料:不锈钢;外径:0.003 m;内径:0.002 m
    下载: 导出CSV
  • [1] JOHANES V E, GERNER V H J, BENTHEM V R C, et al.Component developments in Europe for mechanically pumped loop systems(MPLS) for cooling applications in space[C]//46th International Conference on Environmental Systems, 2016: 1-14.
    [2] 鲁盼, 赵振明, 颜吟雪.高分辨率遥感相机CCD器件精密热控制[J].航天返回与遥感, 2014, 35(4):59-66. doi: 10.3969/j.issn.1009-8518.2014.04.008

    LU P, ZHAO Z M, YAN Y X.Precise thermal control of CCD in high resolution remote sensing[J].Spacecraft Recovery & Remote Sensing, 2014, 35(4):59-66(in Chinese). doi: 10.3969/j.issn.1009-8518.2014.04.008
    [3] 童叶龙, 李国强, 余雷, 等.CCD组件的热分析和热实验[J].航天返回与遥感, 2014, 35(5):46-53. doi: 10.3969/j.issn.1009-8518.2014.05.007

    TONG Y L, LI G Q, YU L, et al.Heat dissipation and precise temperature control for high-power CCD assembly[J].Spacecraft Recovery & Remote Sensing, 2014, 35(5):46-53(in Chinese). doi: 10.3969/j.issn.1009-8518.2014.05.007
    [4] ELLIS M C, KURWITZ R C.Development of a pumped two-phase system for spacecraft thermal control[C]//46th International Conference on Environmental Systems, 2016: 1-16.
    [5] OREN J A.Study of thermal management for space platform applications: NASA CR-165307[R].Washington, D.C.: NASA, 1981.
    [6] STALMACH D D, OREN J A.Systems evaluation of thermal bus concepts: NASA CR-167774[R].Washington, D.C.: NASA, 1982.
    [7] HASLETT B.Space station technology 1983: NASA CP-2293[R].Washington, D.C.: NASA, 1983.
    [8] DELIL A A M.Some considerations concerning two-phase flow thermal bus systems for spacecraft: NLR-RL-84-028[R].Amsterdam: NLR, 1984.
    [9] RYOSUKE F, MASATAKA Y, MASAYUKI N, et al.Experiment configuration and preliminary results of two-phase fluid loop experiment (TPFLEX)-STS-85 mission payload[J].Acta Astronautica, 2002, 50(4):217-224. doi: 10.1016/S0094-5765(01)00159-X
    [10] BLECLNOV S M, DESYATOV A K, VEZHNEVETS P D, et al.Experimental flight facility-two-phase heat transfer model in the Russian segment of the international space station[C]//Proceedings of Aviation and Spacecraft Industry and Technology, 1999: N13.
    [11] JOHANES V E, PAUW A, DONK G V.AMS02 tracker thermal control cooling system test results of the AMS02 thermal vacuum test in the LSS at ESA ESTEC[C]//42nd International Conference on Environmental system, 2012: 1-14.
    [12] 于新刚, 徐侃, 苗建印, 等.高热流散热泵驱两相流体回路设计及飞行验证[J].宇航学报, 2017, 38(2):192-197. doi: 10.3873/j.issn.1000-1328.2017.02.011

    YU X G, XU K, MIAO J Y, et al.Design and on-board validation of pumped two-phase fluid loop for high heat flux removal[J].Journal of Astronautics, 2017, 38(2):192-197(in Chinese). doi: 10.3873/j.issn.1000-1328.2017.02.011
    [13] JONI T.Modeling a two-phase mechanically pumped loop[D].Enscheda: University of Twente, 2014: 14-26. http://essay.utwente.nl/69257/
    [14] HUANG Z C, HE Z H, MO D C, et al.Coupling between an accumulator and a loop in a mechanically pumped carbon dioxide two-phase loop[J].Microgravity Science and Technology, 2011, 21(Supp1):23-29. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fe1639a30b1e312cf0a52f791dd12e3c
    [15] 莫冬传, 黄臻成, VAN ES J, 等.机械泵驱动两相环路热控系统的储液器与主回路耦合特性分析[C]//中国工程热物理学会多相流学术会议, 2012: 1206124. http://d.wanfangdata.com.cn/Conference_7747059.aspx

    MO D C, HUANG Z C, VAN ES J, et al.Coupling properties between accumulator and main loop of mechanically pumped two phase loop[C]//Chinese Society of Engineering Thermophysics Multiphase Flow Conference, 2012: 1206124(in Chinese). http://d.wanfangdata.com.cn/Conference_7747059.aspx
    [16] VAN GERNER H J, BRAAKSMA N.Transient modelling of pumped two-phase cooling systems: Comparison between experiment and simulation[C]//46th International Conference on Environmental Systems, 2016: 1-15.
    [17] VAN GERNER H J, BOLDER H J, BOLDER R, et al.Transient modelling of pumped two-phase cooling systems: Comparison between experiment and simulation with R134a[C]//47th International Conference on Environmental Systems, 2017: 1-10.
    [18] 庄礼贤, 尹协远, 马晖扬.流体力学[M].2版.合肥:中国科学技术大学出版社, 2009:65-89.

    ZHUANG L X, YIN X Y, MA H Y.Fluid mechanics[M].2nd ed.Hefei:University of Science and Technology of China Press, 2009:65-89(in Chinese).
    [19] 陶文铨.数值计算传热学的近代进展[M].北京:科学出版社, 2000:181-192.

    TAO W Q.Advances in computational heat transfer[M].Beijing:Science Press, 2000:181-192(in Chinese).
    [20] FRIEDEL L.Improved friction pressure drop correlation for horizontal and vertical two-phase pipe flow[C]//European Two-Phase Flow Group Meeting, 1979: 485-492.
    [21] 弗兰克P.英克鲁佩勒, 大卫P.德维特, 狄奥多尔L.伯格曼, 等.传热和传质基本原理[M].葛新石, 叶宏, 译.北京: 化学工业出版社, 2011: 297-332.

    INCROPERA F P, DEWITT D P, BERGMAN T L, et al.Fundamentals of heat and mass transfer[M].GE X S, YE H, translated.Beijing: Chemical Industry Press, 2011: 297-332(in Chinese).
    [22] SHAH M M.Prediction of heat transfer during boiling of cryogenics fluids flowing in tubes[J].Cryogenics, 1984, 24(5):231-236. doi: 10.1016/0011-2275(84)90148-6
    [23] LEONID V J, MARCO M, CLAUDIO F.Advanced design of a "low-cost" loop heat pipe[C]//39th International Conference on Environmental Systems, 2009: 1-12.
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  474
  • HTML全文浏览量:  3
  • PDF下载量:  519
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-12
  • 录用日期:  2019-04-21
  • 刊出日期:  2019-11-20

目录

    /

    返回文章
    返回
    常见问答