Review on refrigerant for direct-cooling thermal management system of lithium-ion battery for electric vehicles
-
摘要:
电动汽车用直冷系统是未来电动汽车热管理系统的可行解决方案之一,在整车减重、改善温度一致性等方面具备较大潜力。冷媒是直冷热管理系统的重要组成,影响直冷系统制冷能力、效率、安全性等因素。选择高效、匹配的冷媒对直冷热管理系统设计格外重要。梳理了近年来电动汽车直冷热管理系统用冷媒的研究进展。首先,基于电动汽车工况阐述了锂离子电池的热特性需求与直冷热管理系统特性;其次,系统分析了常用冷媒特性的定义与表征;然后,详细介绍了单质冷媒与混合冷媒的研究进展;最后,总结了冷媒亟待解决的问题与未来展望,并为新一代直冷热管理系统用冷媒的发展提出了可行的研究方向。
Abstract:The direct-cooling thermal management system is one of the feasible solutions for the future advanced thermal management system of electric vehicles, which has great potential in terms of vehicle weight reduction and temperature consistency management. Refrigerants are the critical components for direct-cooling thermal management system that directly impact the refrigeration capacity, efficiency and safety. Selecting an effective and suitable refrigerant is especially important for direct-cooling thermal management systems. In this paper, the refrigerants for the direct-cooling thermal management system in recent years is reviewed. First, the thermal management requirements of the lithium-ion batteries and the performance of the direct-cooling thermal management systems are introduced based on electric vehicle applications. Then the definitions and characteristics of commonly used refrigerants are systematically analyzed. The next part introduces the research progress of the pure refrigerants and mixed refrigerants in detail. Finally, the problems and future prospects of the refrigerants are summarized, and feasible research directions for refrigerants in thefuture direct-cooling thermal management systems are proposed.
-
Key words:
- lithium-ion battery /
- thermal management system /
- refrigerant /
- direct-cooling /
- electric vehicles
-
表 1 环境保护公约
Table 1. Environmental protection convention
名称 签订时间 主要内容 保护臭氧层维也纳公约 1985年 控制消耗臭氧层物质排放,保护臭氧层 关于耗损臭氧层物质的蒙特利尔议定书 1989年 在2000年前停止生产和使用含氯氟烃类化合物的目标 联合国气候变化框架公约 1992年 减少温室气体排放,减少人为活动对气候系统的危害,减缓气候变化,增强生态系统对气候变化的适应性 京都议定书 1997年 将大气中的温室气体含量稳定在一个适当的水平,进而防止剧烈的气候改变对人类造成伤害 巴黎协定 2015年 降低温室气体排放,减缓全球平均气温升高 表 2 常用冷媒特性定义及表征
Table 2. Characteristic definition and characterization of commonly used refrigerant
特性种类 特性名称 特性定义 特性表征 物理特性 沸点 液体沸腾时的温度 沸点决定了冷媒的最低使用温度 临界温度 使物质由气态变为液态的最高温度 临界温度决定了冷媒使用的最高温度 临界压力 临界温度时使气体液化所需要的最小压力 临界压力代表气体在临界温度下饱和蒸汽压。临界压力越低,对压缩机及管道强度的要求越低 比热 没有相变化和化学变化时,一定量均相物质温度升高1 K所需的热量 比热代表冷媒的纯液相或纯气相的吸热能力,该值衡量了冷媒非相变换热的能力 蒸发潜热 在恒定温度下,使某物质由液相转变为气相所需要的热量 蒸发潜热代表冷媒蒸发吸热能力,该值结合冷媒密度可衡量冷媒单位质量的蒸发吸热能力 润滑油相溶性 冷媒与特性润滑油的溶解性 相溶的冷媒与润滑油不分相,优化了冷媒在换热器内的传热,且有利于制冷系统在低温环境中应用,维持零件的优良润滑特性,但是溶解的润滑油会降低使用压力、压缩机的制冷量、系统效率等 环保特性 ODP 臭氧消耗潜值(臭氧衰减指数), 以R11对臭氧破坏影响作为基准 ODP值代表冷媒对于臭氧层破坏能力的影响因子,ODP应尽可能低 GWP 全球变暖潜能值, 是物质产生温室效应的评价指数,以二氧化碳作为基准 GWP值越高则代表该冷媒会在未来对于温室效应产生更大的影响 安全特性 毒性 外源化学物在一定条件下损伤生物体的能力 毒性是衡量冷媒安全性的重要因素 可燃性 在规定的试验条件下,材料或制品进行有焰燃烧的能力 可燃性在一定程度上表征了冷媒的安全性 表 3 部分冷媒热物性参数
Table 3. Thermal property parameters of some refrigerants
冷媒名称 分类 沸点/℃ 临界压力/MPa 临界温度/℃ 蒸发潜热/(kJ·mol-1) 可燃性 毒性 R12 CFC -29.75 4.136 1 111.97 189.308 无 无 R22 HCFC -40.81 4.99 96.145 192.243 无 无 R23 HCFC -82.01 4.832 26.143 97.42 无 无 R32 HFC -51.70 5.78 78.1 204.87 可燃 无 R134a HFC -26.18 4.066 101.6 197.53 无 无 R1234yf HFO -25 2.63 102 153.03 无 无 R1234ze HFO -18.95 3.63 109.37 174.192 无 无 R290 HC -42.1 4.24 96.8 376.334 可燃 无 R600 HC -0.489 3.769 151.975 371.382 可燃 无 R600a HC -11.7 3.64 134.66 339.55 易燃 无 R717 无机 -33.32 11.33 132.25 1 206.09 无 有毒 R744 无机 -78.4 7.37 30.97 176.64 无 无 表 4 部分单质冷媒研究现状
Table 4. Research status of some elemental refrigerants
主要研究人员及年份 研究对象 研究内容 研究结果 Longo[47], 2015 R134a、R152a、R1234ze 测试3类冷媒的对流换热系数 R152a冷媒表现出较好的换热性能,可能成为替代R134a的低GWP产品 Jin[48], 2017 R410A、R744 分析2类冷媒在不同热泵系统中的能量利用情况 R410A系统在COP、制冷量、能量利用率等方面优于R744系统,但R744系统在未来仍有较大提升空间 Zou[49], 2017 R134a、R1234yf 研究2类冷媒在汽车热泵系统中低温制热性能 R134a与R1234yf在制热量与COP方面具有相似的表现 Hirose[50], 2018 R32、R152、R410A 发现毛细管内的对流换热系数显著高于光滑管,并验证了对流换热系数的有效性 提出了一种新的冷媒对流换热系数计算式 Li[51], 2019 R32 使用高速摄像机对R32沸腾换热过程作可视化分析 R32的对流换热经验公式无法与测量的流场得到匹配 He[52], 2018 R32 研究了R32冷媒在不同管径(5、7 mm)的微通道换热器内的对流换热系数 冷媒的质量流量及热流密度对R32的对流换热系数及冷却系统具有较大影响 Longo[53],2019 R152、R1234yf、R1234ze 验证对流换热系数公式有效性及3种冷媒对R134a的可替代性 3类冷媒均表现出与R134a相近的传热特性与流动特性 Wang[38], 2019 R134a 研究R134a在毛细管中的对流换热系数 R134a在毛细管中的对流换热系数相对光滑管高出1.59~1.68倍 Illán-Gómez[54], 2019 R134a、R1234yf 研究R1234yf在R134a冷却系统中的制冷效果 因R1234yf的热容及汽化潜热均低于R134a,直接替换后系统制冷效率降低了25% 表 5 部分混合冷媒研究现状
Table 5. Research status of some mixed refrigerants
主要研究人员及年份 研究对象 研究内容 研究结果 Harby[59], 2017 多种混合冷媒 研究多种混合冷媒的替代效果 HC/HFC的混合冷媒可替代CFC和HCFC,且R290在某些应用领域可取代R22 Kasera[60], 2017 R407c 研究R407c对R22的替代性 R22在COP、制冷量、能耗等方面优于R407c,但R407c仍是替代R22的最优方案之一 Zhang[61], 2017 R744/R717 分析R744、R717、R290、R22、R134a在相同制冷循环中的性能 R744与R717的单质冷媒均存在明显的缺点,混合应用在自复叠式制冷系统中表现较好 Li[62],2018 R447(R32/R1234ze/R125) 在0.86 mm微通道换热器内的对流换热系数 与纯工质的对流换热系数相近,且R447优于R410A(R32/R125) Yu[63], 2018 R744/R290 分析自动循环热泵系统的热力学模型 提出了跨临界与亚临界状态下混合冷媒的最优化体积比及相应系统数据,进行系统优化 Jin[64], 2018 R410A 在水平微通道换热器内雷诺数、热流密度对沸腾换热效果的影响 冷媒R410A优于单质冷媒R32 Al Ghafri[42], 2019 R1234yf、R1234ze 研究多种混合冷媒的密度、相平衡点、热容等参数 实验测量得到了多种混合冷媒的热物性参数 Mylona[65], 2019 R1234yf、R1234ze 测量多种混合冷媒热物性参数 丰富了REFPROP软件中ECE模型中混合冷媒热物性参数,模型误差在3%以内 Yang[66], 2019 R513A(R1234yf/R134a) 研究R513A冷媒关注量及制冷效果 R513A相对R134a而言灌注量减小21%;24 h能耗低3.5%;R513A制冷量更高 -
[1] XU J, LAN C, QIAO Y, et al.Prevent thermal runaway of lithium-ion batteries with minichannel cooling[J].Applied Thermal Engineering, 2017, 110:883-890. doi: 10.1016/j.applthermaleng.2016.08.151 [2] WU W X, WANG S, WU W, et al.A critical review of battery thermal performance and liquid based battery thermal management[J].Energy Conversion and Management, 2019, 182:262-281. doi: 10.1016/j.enconman.2018.12.051 [3] KIM J, OH J, LEE H.Review on battery thermal management system for electric vehicles[J].Applied Thermal Engineering, 2019, 149:192-212. doi: 10.1016/j.applthermaleng.2018.12.020 [4] GOU J, LIU W.Feasibility study on a novel 3D vapor chamber used for Li-ion battery thermal management system of electric vehicle[J].Applied Thermal Engineering, 2019, 152:362-369. doi: 10.1016/j.applthermaleng.2019.02.034 [5] IANNICIELLO L, BIWOLÉ P H, ACHARD P.Electric vehicles batteries thermal management systems employing phase change materials[J].Journal of Power Sources, 2018, 378:383-403. doi: 10.1016/j.jpowsour.2017.12.071 [6] ZHANG X, LIU C, RAO Z.Experimental investigation on thermal management performance of electric vehicle power battery using composite phase change material[J].Journal of Cleaner Production, 2018, 201:916-924. doi: 10.1016/j.jclepro.2018.08.076 [7] SMITH J, SINGH R, HINTERBERGER M, et al.Battery thermal management system for electric vehicle using heat pipes[J].International Journal of Thermal Sciences, 2018, 134:517-529. doi: 10.1016/j.ijthermalsci.2018.08.022 [8] CEN J, LI Z, JIANG F.Experimental investigation on using the electric vehicle air conditioning system for lithium-ion battery thermal management[J].Energy for Sustainable Development, 2018, 45:88-95. doi: 10.1016/j.esd.2018.05.005 [9] ZHANG G, QIN F, ZOU H, et al.Experimental study on a dual-parallel-evaporator heat pump system for thermal management of electric vehicles[C]//8th International Conference on Applied Energy (ICAE).Amsterdam: Elsevier, 2017, 105: 2390-2395. [10] AL-ZAREER M, DINCER I, ROSEN M A.Novel thermal management system using boiling cooling for high-powered lithium-ion battery packs for hybrid electric vehicles[J].Journal of Power Sources, 2017, 363:291-303. doi: 10.1016/j.jpowsour.2017.07.067 [11] DENG Y, FENG C, E J, et al.Effects of different coolants and cooling strategies on the cooling performance of the power lithium ion battery system:A review[J].Applied Thermal Engineering, 2018, 142:10-29. doi: 10.1016/j.applthermaleng.2018.06.043 [12] HUANG Q, LI X, ZHANG G, et al.Experimental investigation of the thermal performance of heat pipe assisted phase change material for battery thermal management system[J].Applied Thermal Engineering, 2018, 141:1092-1100. doi: 10.1016/j.applthermaleng.2018.06.048 [13] ZHAO C, SOUSA A C M, JIANG F.Minimization of thermal non-uniformity in lithium-ion battery pack cooled by channeled liquid flow[J].International Journal of Heat and Mass Transfer, 2019, 129:660-670. doi: 10.1016/j.ijheatmasstransfer.2018.10.017 [14] SONG W, CHEN M, CHEN Y, et al.Non-uniform effect on the thermal/aging performance of lithium-ion pouch battery[J].Applied Thermal Engineering, 2018, 128:1165-1174. doi: 10.1016/j.applthermaleng.2017.09.090 [15] LIU H, WEI Z, HE W, et al.Thermal issues about Li-ion batteries and recent progress in battery thermal management systems:A review[J].Energy Conversion and Management, 2017, 150:304-330. doi: 10.1016/j.enconman.2017.08.016 [16] AL-ZAREER M, DINCER I, ROSEN M A.Heat and mass transfer modeling and assessment of a new battery cooling system[J].International Journal of Heat and Mass Transfer, 2018, 126:765-778. doi: 10.1016/j.ijheatmasstransfer.2018.04.157 [17] SAAB R, AL QUABEH H, ALI HM I.Variable refrigerant flow cooling assessment in humid environment using different refrigerants[J].Journal of Environmental Management, 2018, 224:243-251. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b7bad64424a2cac291a2c377c61bd06d [18] MESSA G V, FERRARESE G, MALAVASI S.A mixed Euler-Euler/Euler-Lagrange approach to erosion prediction[J].Wear, 2015, 342-343:138-153. doi: 10.1016/j.wear.2015.08.015 [19] DAPELO D, BRIDGEMAN J.Euler-Lagrange computational fluid dynamics simulation of a full-scale unconfined anaerobic digester for wastewater sludge treatment[J].Advances in Engineering Software, 2018, 117:153-169. doi: 10.1016/j.advengsoft.2017.08.009 [20] ISSAKHOV A, ZHANDAULET Y, NOGAEVA A.Numerical simulation of dam break flow for various forms of the obstacle by VOF method[J].International Journal of Multiphase Flow, 2018, 109:191-206. doi: 10.1016/j.ijmultiphaseflow.2018.08.003 [21] YIN X, ZARIKOS I, KARADIMITRIOU N K, et al.Direct simulations of two-phase flow experiments of different geometry complexities using volume-of-fluid (VOF) method[J].Chemical Engineering Science, 2019, 195:820-827. doi: 10.1016/j.ces.2018.10.029 [22] BILGER C, ABOUKHEDR M, VOGIATZAKI K, et al.Evaluation of two-phase flow solvers using level set and volume of fluid methods[J].Journal of Computational Physics, 2017, 345:665-686. doi: 10.1016/j.jcp.2017.05.044 [23] GU Z H, WEN H L, YU C H, et al.Interface-preserving level set method for simulating dam-break flows[J].Journal of Computational Physics, 2018, 374:249-280. doi: 10.1016/j.jcp.2018.07.057 [24] SCHRAGE R W.A theoretical study of interface mass transfer[D].New York: Columbia University, 1953. [25] CHIEN N B, CHOI K, OH J, et al.An experimental investigation of flow boiling heat transfer coefficient and pressure drop of R410A in various minichannel multiport tubes[J].International Journal of Heat and Mass Transfer, 2018, 127:675-686. doi: 10.1016/j.ijheatmasstransfer.2018.06.145 [26] DONG C, HIBIKI T.Heat transfer correlation for two-component two-phase slug flow in horizontal pipes[J].Applied Thermal Engineering, 2018, 141:866-876. doi: 10.1016/j.applthermaleng.2018.06.029 [27] DONG C, HIBIKI T.Correlation of heat transfer coefficient for two-component two-phase slug flow in a vertical pipe[J].International Journal of Multiphase Flow, 2018, 108:124-139. doi: 10.1016/j.ijmultiphaseflow.2018.07.003 [28] IN S, BAEK S, JIN L, et al.Flow boiling heat transfer of R123/R134a mixture in a microchannel[J].Experimental Thermal and Fluid Science, 2018, 99:474-486. doi: 10.1016/j.expthermflusci.2018.08.013 [29] AL-ZAREER M, DINCER I, ROSEN M A.Development and evaluation of a new ammonia boiling based battery thermal management system[J].Electrochimica Acta, 2018, 280:340-352. doi: 10.1016/j.electacta.2018.05.093 [30] SAW L H, POON H M, THIAM H S, et al.Novel thermal management system using mist cooling for lithium-ion battery packs[J].Applied Energy, 2018, 223:146-158. doi: 10.1016/j.apenergy.2018.04.042 [31] DOUBEK M, HAUBNER M, VACEK V, et al.Measurement of heat transfer coefficient in two phase flows of radiation-resistant zeotropic C2F6/C3F8 blends[J].International Journal of Heat and Mass Transfer, 2017, 113:246-256. doi: 10.1016/j.ijheatmasstransfer.2017.05.049 [32] ZHANG J, KAERN M R, OMMEN T, et al.Condensation heat transfer and pressure drop characteristics of R134a, R1234ze(E), R245fa and R1233zd(E) in a plate heat exchanger[J].International Journal of Heat and Mass Transfer, 2019, 128:136-149. doi: 10.1016/j.ijheatmasstransfer.2018.08.124 [33] YANG C, NALBANDIAN H, LIN F.Flow boiling heat transfer and pressure drop of refrigerants HFO-1234yf and HFC-134a in small circular tube[J].International Journal of Heat and Mass Transfer, 2018, 121:726-735. doi: 10.1016/j.ijheatmasstransfer.2017.12.161 [34] KASAEIAN A, HOSSEINI S M, SHEIKHPOUR M, et al.Applications of eco-friendly refrigerants and nanorefrigerants:A review[J].Renewable and Sustainable Energy Reviews, 2018, 96:91-99. doi: 10.1016/j.rser.2018.07.033 [35] ABAS N, KALAIR A R, KHAN N, et al.Natural and synthetic refrigerants, global warming:A review[J].Renewable and Sustainable Energy Reviews, 2018, 90:557-569. doi: 10.1016/j.rser.2018.03.099 [36] YAPICIOGLU A, DINCER I.A review on clean ammonia as a potential fuel for power generators[J].Renewable and Sustainable Energy Reviews, 2019, 103:96-108. doi: 10.1016/j.rser.2018.12.023 [37] JIANG P, ZHAO C, LIU B.Flow and heat transfer characteristics of r22 and ethanol at supercritical pressures[J].The Journal of Supercritical Fluids, 2012, 70:75-89. doi: 10.1016/j.supflu.2012.06.011 [38] WANG D, TIAN R, ZHANG Y, et al.Experimental comparison of the heat transfer of supercritical R134a in a micro-fin tube and a smooth tube[J].International Journal of Heat and Mass Transfer, 2019, 129:1194-1205. doi: 10.1016/j.ijheatmasstransfer.2018.10.052 [39] AMMAR S M, ABBAS N, ABBAS S, et al.Experimental investigation of condensation pressure drop of R134a in smooth and grooved multiport flat tubes of automotive heat exchanger[J].International Journal of Heat and Mass Transfer, 2019, 130:1087-1095. doi: 10.1016/j.ijheatmasstransfer.2018.11.018 [40] WEN J, GU X, WANG S, et al.The comparison of condensation heat transfer and frictional pressure drop of R1234ze(E), propane and R134a in a horizontal mini-channel[J].International Journal of Refrigeration, 2018, 92:208-224. doi: 10.1016/j.ijrefrig.2018.03.006 [41] DANG Y, KAMIAKA T, DANG C, et al.Liquid viscosity of low-GWP refrigerant mixtures (R32+R1234yf) and (R125+R1234yf)[J].The Journal of Chemical Thermodynamics, 2015, 89:183-188. doi: 10.1016/j.jct.2015.05.009 [42] AL GHAFRI S Z, ROWLAND D, AKHFASH M, et al.Thermodynamic properties of hydrofluoroolefin (R1234yf and R1234ze(E)) refrigerant mixtures:Density, vapour-liquid equilibrium, and heat capacity data and modelling[J].International Journal of Refrigeration, 2019, 98:249-260. doi: 10.1016/j.ijrefrig.2018.10.027 [43] CHOUDHARI C S, SAPALI S N.Performance investigation of natural refrigerant R290 as a substitute to R22 in refrigeration systems[C]//International Conference on Recent Advancement in Air Conditioning and Refrigeration (RAAR).Amsterdam: Elsevier, 2017, 109: 346-352. http://www.sciencedirect.com/science/article/pii/S1876610217301066 [44] BAE S J, KWON J, KIM S G, et al.Condensation heat transfer and multi-phase pressure drop of CO2 near the critical point in a printed circuit heat exchanger[J].International Journal of Heat and Mass Transfer, 2019, 129:1206-1221. doi: 10.1016/j.ijheatmasstransfer.2018.10.055 [45] GAO Y, SHAO S, ZHAN B, et al.Heat transfer and pressure drop characteristics of ammonia during flow boiling inside a horizontal small diameter tube[J].International Journal of Heat and Mass Transfer, 2018, 127:981-996. doi: 10.1016/j.ijheatmasstransfer.2018.07.137 [46] JIANG L, WANG R Z, LI J B, et al.Performance analysis on a novel sorption air conditioner for electric vehicles[J].Energy Conversion and Management, 2018, 156:515-524. doi: 10.1016/j.enconman.2017.11.077 [47] LONGO G A, ZILIO C, RIGHETTI G.Condensation of the low GWP refrigerant HFC152a inside a brazed plate heat exchanger[J].Experimental Thermal and Fluid Science, 2015, 68:509-515. doi: 10.1016/j.expthermflusci.2015.06.010 [48] JIN Z, EIKEVIK T M, NEKSÅ P, et al.Annual energy performance of R744 and R410A heat pumping systems[J].Applied Thermal Engineering, 2017, 117:568-576. doi: 10.1016/j.applthermaleng.2017.02.072 [49] ZOU H, HUANG G, SHAO S, et al.Experimental study on heating performance of an R1234yf heat pump system for electric cars[C]//9th International Conference on Applied Energy (ICAE).Amsterdam: Elsevier, 2017, 142: 1015-1021. [50] HIROSE M, ICHINOSE J, INOUE N.Development of the general correlation for condensation heat transfer and pressure drop inside horizontal 4 mm small-diameter smooth and microfin tubes[J].International Journal of Refrigeration, 2018, 90:238-248. doi: 10.1016/j.ijrefrig.2018.04.014 [51] LI H, HRNJAK P.Flow visualization of R32 in parallel-port microchannel tube[J].International Journal of Heat and Mass Transfer, 2019, 128:1-11. doi: 10.1016/j.ijheatmasstransfer.2018.08.120 [52] HE G, ZHOU S, LI D, et al.Experimental study on the flow boiling heat transfer characteristics of R32 in horizontal tubes[J].International Journal of Heat and Mass Transfer, 2018, 125:943-958. doi: 10.1016/j.ijheatmasstransfer.2018.04.116 [53] LONGO G A, MANCIN S, RIGHETTI G, et al.Saturated vapour condensation of R134a inside a 4 mm ID horizontal smooth tube:Comparison with the low GWP substitutes R152a, R1234yf and R1234ze(E)[J].International Journal of Heat and Mass Transfer, 2019, 133:461-473. doi: 10.1016/j.ijheatmasstransfer.2018.12.115 [54] ILLÁN-GÓMEZ F, GARCÍA-CASCALES J R.Experimental comparison of an air-to-water refrigeration system working with R134a and R1234yf[J].International Journal of Refrigeration, 2019, 97:124-131. doi: 10.1016/j.ijrefrig.2018.09.026 [55] LIU C, ZHANG Y, GAO T, et al.Performance evaluation of propane heat pump system for electric vehicle in cold climate[J].International Journal of Refrigeration, 2018, 95:51-60. doi: 10.1016/j.ijrefrig.2018.08.020 [56] WANG D, YU B, HU J, et al.Heating performance characteristics of CO2 heat pump system for electrical vehicle in a cold climate[J].International Journal of Refrigeration, 2018, 85:27-41. doi: 10.1016/j.ijrefrig.2017.09.009 [57] MOTA-BABILONI A, NAVARRO-ESBRÍ J, BARRAGÁN-CERVERA Á, et al.Analysis based on EU regulation No 517/2014 of new HFC/HFO mixtures as alternatives of high GWP refrigerants in refrigeration and HVAC systems[J].International Journal of Refrigeration, 2015, 52:21-31. doi: 10.1016/j.ijrefrig.2014.12.021 [58] ZHANG X.Heat transfer and enhancement analyses of flow boiling for R417A and R22[J].Experimental Thermal and Fluid Science, 2011, 35(7):1334-1342. doi: 10.1016/j.expthermflusci.2011.04.020 [59] HARBY K.Hydrocarbons and their mixtures as alternatives to environmental unfriendly halogenated refrigerants:An updated overview[J].Renewable and Sustainable Energy Reviews, 2017, 73:1247-1264. doi: 10.1016/j.rser.2017.02.039 [60] KASERA S, BHADURI S C.Performance of R407C as an alternate to R22: A review[C]//International Conference on Recent Advancement in Air Conditioning and Refrigeration(RAAR).Amsterdam: Elsevier, 2017, 109: 4-10. http://www.sciencedirect.com/science/article/pii/S1876610217300541 [61] ZHANG L, YANG C, LIU H, et al.Theoretical investigation on the properties of R744/R290 mixtures[C]//10th International Symposium on Heating, Ventilation and Air Conditioning(ISHVAC).Amsterdam: Elsevier, 2017, 205: 1620-1626. [62] LI M, GUO Q, LV J, et al.Research on condensation heat transfer characteristics of R447A, R1234ze, R134a and R32 in multi-port micro-channel tubes[J].International Journal of Heat and Mass Transfer, 2018, 118:637-650. doi: 10.1016/j.ijheatmasstransfer.2017.10.101 [63] YU B, YANG J, WANG D, et al.Modeling and theoretical analysis of a CO2-propane autocascade heat pump for electrical vehicle heating[J].International Journal of Refrigeration, 2018, 95:146-155. doi: 10.1016/j.ijrefrig.2018.07.030 [64] JIN P, ZHAO C, JI W, et al.Experimental investigation of R410A and R32 falling film evaporation on horizontal enhanced tubes[J].Applied Thermal Engineering, 2018, 137:739-748. doi: 10.1016/j.applthermaleng.2018.03.060 [65] MYLONA S K, HUGHES T J, SAEED A A, et al.Thermal conductivity data for refrigerant mixtures containing R1234yf and R1234ze(E)[J].The Journal of Chemical Thermodynamics, 2019, 133:135-142. doi: 10.1016/j.jct.2019.01.028 [66] YANG M, ZHANG H, MENG Z, et al.Experimental study on R1234yf/R134a mixture(R513A) as R134a replacement in a domestic refrigerator[J].Applied Thermal Engineering, 2019, 146:540-547. doi: 10.1016/j.applthermaleng.2018.09.122
计量
- 文章访问数: 1276
- HTML全文浏览量: 114
- PDF下载量: 616
- 被引次数: 0