留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

耗氧型惰化系统反应器性能理论

谢辉辉 冯诗愚 彭孝天 潘俊 王洋洋

谢辉辉, 冯诗愚, 彭孝天, 等 . 耗氧型惰化系统反应器性能理论[J]. 北京航空航天大学学报, 2019, 45(11): 2312-2319. doi: 10.13700/j.bh.1001-5965.2019.0117
引用本文: 谢辉辉, 冯诗愚, 彭孝天, 等 . 耗氧型惰化系统反应器性能理论[J]. 北京航空航天大学学报, 2019, 45(11): 2312-2319. doi: 10.13700/j.bh.1001-5965.2019.0117
XIE Huihui, FENG Shiyu, PENG Xiaotian, et al. Theoretical of reactor performance in oxygen consumption based inerting system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(11): 2312-2319. doi: 10.13700/j.bh.1001-5965.2019.0117(in Chinese)
Citation: XIE Huihui, FENG Shiyu, PENG Xiaotian, et al. Theoretical of reactor performance in oxygen consumption based inerting system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(11): 2312-2319. doi: 10.13700/j.bh.1001-5965.2019.0117(in Chinese)

耗氧型惰化系统反应器性能理论

doi: 10.13700/j.bh.1001-5965.2019.0117
基金项目: 

中央高校基本科研业务费专项资金 

江苏省研究生科研与实践创新计划 KYCX19_0198

江苏高校优势学科建设工程 

详细信息
    作者简介:

    谢辉辉  男, 硕士研究生。主要研究方向:飞行器燃油系统

    冯诗愚   男, 博士, 副教授。主要研究方向:飞行器环境控制和燃油系统

    通讯作者:

    冯诗愚. E-mail:shiyuf@nuaa.edu.cn

  • 中图分类号: V224+.2

Theoretical of reactor performance in oxygen consumption based inerting system

Funds: 

the Fundamental Research Funds for the Central Universities 

Postgraduate Research & Practice Innovation Program of Jiangsu Province KYCX19_0198

Priority Academic Program Development of Jiansu Higher Education Institutions 

More Information
  • 摘要:

    为了研究耗氧型燃油惰化系统中反应器的工作特性,在Fluent 17.0软件多孔介质模型基础上以用户自定义变量(UDS)形式添加固相能量方程来建立气-固两相耦合传热的两温度反应器模型,以大庆RP-3燃油为对象并通过实验测试了其反应动力学方程,然后以用户自定义函数(UDF)源项的形式添加化学反应,对反应器进行了仿真。研究了不同工况对反应器惰化效率的影响,以及反应器在惰化过程中的内部温度及RP-3浓度变化特性。结果显示:反应物浓度对转化率的影响与氧浓度饱和值有关系,在没有额外冷却的情况下反应器会飞温,化学反应主要发生在反应器的后半段,且靠近反应器轴线处。因此在未来设计反应器时,应当考虑额外冷却措施以防止飞温,使催化床温度均匀分布来提高反应器工作效率。

     

  • 图 1  催化剂性能测试实验

    Figure 1.  Catalyst performance test experiment

    图 2  不同氧气浓度下反应速率随温度变化

    Figure 2.  Variation of reaction rate with temperature at different oxygen concentrations

    图 3  不同温度下反应速率随RP-3浓度变化

    Figure 3.  Variation of reaction rate with RP-3 concentration at different temperatures

    图 4  催化反应器结构

    Figure 4.  Catalytic reactor structure

    图 5  网格数量与反应器压降关系

    Figure 5.  Relationship between number of grids and reactor pressure drop

    图 6  RP-3转化率与反应物浓度关系

    Figure 6.  Relationship between RP-3 conversion rate and reactant concentration

    图 7  不同气流速度下RP-3转化率与温度关系

    Figure 7.  RP-3 conversion rate versus temperature at different gas velocities

    图 8  t=80s时刻反应器内气体温度云图

    Figure 8.  Gas temperature contour in reactor at t=80s

    图 9  t=80s时刻反应器内RP-3浓度云图

    Figure 9.  RP-3 concentration contour in reactor at t=80s

    图 10  不同时刻催化床轴线处温度分布

    Figure 10.  Temperature distribution at axis of catalytic bed at different moments

    图 11  不同时刻反应器轴线处RP-3浓度分布

    Figure 11.  RP-3 concentration distribution at reactor axis at different moments

    图 12  不同截面处气相温度随时间变化

    Figure 12.  Variation of gas phase temperature at different cross-sections with time

    图 13  不同截面处RP-3平均浓度随时间变化

    Figure 13.  Variation of average concentration of RP-3 at different cross-sections with time

    图 14  t=80s时刻催化床不同轴向处RP-浓度

    Figure 14.  RP-3 concentration in different axial positions of catalytic bed at t=80s

    图 15  t=80s时刻催化床不同轴向处径向温度

    Figure 15.  Radial temperature in different axial positions of catalytic bed at t=80s

    表  1  反应器催化床主要参数

    Table  1.   Main parameters of reactor catalytic bed

    参数 数值
    比热容/(J·kg-1·K-1) 600
    密度/(kg·m-3) 2800
    导热系数/(W·m-1·K-1) 0.16
    直径/mm 3.5
    孔隙率 0.38
    下载: 导出CSV
  • [1] 刘卫华, 冯诗愚.飞机燃油箱惰化技术[M].北京:科学出版社, 2018:2-3.

    LIU W H, FENG S Y.Aircraft fuel tank inerting technology[J]. Beijing:Science Press, 2018:2-3(in Chinese).
    [2] ALANKAR G.Method and system for making a fuel-tank inert without an inert gas[J]. SAE International Journal of Aerospace, 2009, 2(1):75-82. doi: 10.4271/2009-01-3134
    [3] VANSANT E F.Gas separation technology[M]. Amsterdam: Elsevier, 1990.
    [4] 王明波, 邵垒, 潘俊, 等.耗氧型燃油箱惰化技术历史和现状[J].航空科学技术, 2016, 27(7):1-7. http://d.old.wanfangdata.com.cn/Periodical/hkkxjs201607002

    WANG M B, SHAO L, PAN J, et al.History and current status of oxygen consumption based fuel tank inerting technology[J]. Aeronautical Science & Technology, 2016, 27(7):1-7(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkkxjs201607002
    [5] JOHNSON R W, ZAKI R, YATES S F.Advanced carbon dioxide fuel tank inerting system: US2008128048A1[P]. 2008-06-05.
    [6] LIMAYE S, KOENIG D.Catalytic reactive component reduction system and methods for the use thereof: US2008019376 A1[P]. 2008-08-21.
    [7] LIMAYE S Y, ROBERTSON S, KOENIG D, et al.Reactive component reduction system and methods for the use thereof: US7896292B2[P]. 2011-03-01.
    [8] ROBERT J R, MORRIS W, MILLER J, et al.Fuel de-oxygenation and aircraft thermal management: AIAA-2006-4027[R]. Reston, VA: AIAA, 2006.
    [9] STUART R.WESLEY J, DONALD K, et al.Development of green on-board inert gas generation system (GOBIGGSTM)[EB/OL]. (2007-03-21)[2019-01-17]. http://www.fire.tc.faa.gov/2007conference/files/Fuel_Tank_Safety/ThursPM/LimayeGOBIGGS/LimayeGOBIGGSABs.pdf.
    [10] STUART R.Announces successful FAA testing of its fuel tank safety system, to prevent TWA 800 type explosions[EB/OL]. (2007-05-15)[2019-01-17]. http://www.phyre.net/uploads/3/7/5/7/37579581/phyre_faa_testing_press_release.pdf.
    [11] CHENG S H, CHENG Z C, NAN C Y, et al.Research progress in catalytic combustion of volatile organic compounds[J]. Modern Chemical Industry, 2015, 35(6):57-61. http://d.old.wanfangdata.com.cn/Periodical/xyjs201705012
    [12] 卢泽湘, 范立维.金属基整体式催化剂的研究进展[J].广州化工, 2010, 38(6):9-12. doi: 10.3969/j.issn.1001-9677.2010.06.004

    LU Z X, FAN L W.Research progress of metal-based monolithic catalysts[J]. Guangzhou Chemical Industry, 2010, 38(6):9-12(in Chinese). doi: 10.3969/j.issn.1001-9677.2010.06.004
    [13] BENEDETTOA A D, LANDI G, SARLI V D, et al.Methane catalytic combustion under pressure[J]. Catalyst Today, 2012, 197:206-213. doi: 10.1016/j.cattod.2012.08.032
    [14] SMITH R J B, MURUGANANDAM L, SHEKHAR S M.CFD analysis of low temperature water gas shift reactor[J]. Computer & Chemical Engineering, 2011, 35(12):2646-2652.
    [15] GAO X, ZHU Y P, LUO Z H, et al.CFD modeling of gas flow in porous medium and catalytic coupling reaction from carbon monoxide to diethyl oxalate in fixed-bed reactors[J]. Chemical Engineering Science, 2011, 66(23):6028-6038. doi: 10.1016/j.ces.2011.08.031
    [16] GUARDO A, COUSSIRAT M, LARRAYOZ M, et al.CFD flow and heat transfer in nonregular packings for fixed bed equipment design[J]. Industrial & Engineering Chemistry, 2004, 43(22):7049-7056.
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  633
  • HTML全文浏览量:  90
  • PDF下载量:  583
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-20
  • 录用日期:  2019-05-18
  • 网络出版日期:  2019-11-20

目录

    /

    返回文章
    返回
    常见问答