Design and evaluation of green taxiing strategy for departure aircraft during peak hours
-
摘要:
为有效减少大型枢纽机场高峰时段离港航空器拥堵延误及污染物排放,开展了不同滑行策略的设计与评价研究。首先,构建了包括环境成本在内的离港航空器滑行成本计算模型;然后,提出了正点推出、机位等待以及速度优化3种不同离港航空器绿色滑行策略;最后,以总滑行成本最小为目标,采用遗传算法开展算例仿真,求解不同策略下的最优滑行路径并对比分析了不同滑行策略对缓解拥堵及减少排放的有效性。结果表明:相较于正点推出策略,机位等待与速度优化策略可减少总滑行时间5.90%和22.49%,具有良好的拥堵缓解效果;此外,机位等待策略还具有最低的油耗及排放成本,而速度优化策略具有最低的污染物排放总量,均具有一定的减排效果。
Abstract:In order to effectively reduce the congestion delay and pollutant emissions of departure aircraft during peak hours in large hub airports, the design and evaluation of different taxiing strategies are carried out. Firstly, the calculation model of departure aircraft taxiing cost including environmental cost is established. Then, three different departure aircraft green taxiing strategies are proposed:punctual pushback, stand holding and speed optimization. Finally, targeting the minimum total taxiing cost, the genetic algorithm is used to carry out example simulation, to solve the optimal taxiing route under different strategies, and to compare and analyze the effectiveness of different taxiing strategies on congestion mitigation and emission reduction. The results show that, compared with the punctual pushback strategy, the stand holding and speed optimization strategy can reduce the total taxiing time by 5.90% and 22.49%, and has good congestion mitigation effect. In addition, the stand holding strategy has the lowest fuel consumption and emission cost, and the speed optimization strategy has the lowest pollutant emissions, so both of them have certain emission reduction effect.
-
Key words:
- air transportation /
- green taxiing strategy /
- stand holding /
- speed optimization /
- pollutant emissions
-
表 1 离港航班信息汇总
Table 1. Summary of departure flight information
航班号 预计推出时刻 停机区 机型 CSH9217 8:00 3 B738 CHH7604 8:03 2 B738 CSH9515 8:04 3 B738 DKH1119 8:05 1 A320 DKH1005 8:06 1 A320 CSH9331 8:06 3 B763 CSH9213 8:10 3 B738 CSH9301 8:13 3 A333 CES5151 8:14 1 A333 CES511 8:15 1 A333 CSH9395 8:18 3 B738 CSH9239 8:21 3 B738 CSH9463 8:23 3 B738 CES2994 8:25 2 A321 CSN6998 8:26 2 B73G CSH9513 8:28 3 B738 CCA1590 8:33 1 B747 CSN3596 8:42 2 B77W CES5103 8:42 1 A333 CES5333 8:44 2 A321 CSH9451 8:47 3 B763 CQH8887 8:48 1 A320 CHH7851 8:49 2 B738 CES5529 8:51 1 A320 CSH815 8:51 3 A333 CSH9131 8:54 3 B738 CES5663 8:55 1 A320 CSH9201 8:58 3 B738 表 2 航班滑行成本数据汇总
Table 2. Summary of flight taxiing cost data
成本类型 类别 成本值 单位滑行时间成本/(元·min-1) B73G 131.07 A320 133.76 A321 126.58 B738 135.37 B763 195.12 A333 276.12 B77W 256.71 B747 320.89 单位污染物排放成本/(元·kg-1) HC 50.50 CO 1.12 NOx 113.46 旅客时间价值/(元·min-1) 国内休闲旅客 1.057 国内商务旅客 2.961 国际休闲旅客 1.762 国际商务旅客 4.935 表 3 离港航班分布统计结果
Table 3. Statistic result of departure flight distribution
参数 时段 8:00—8:14 8:15—8:29 8:30—8:44 8:44—8:59 该时段内推出的航班数 9 6 5 8 该时段内起飞的航班数 6 7 8 3 该时段内的航班增量 3 -1 -3 5 该时段末的地面航班数 9 8 5 10 表 4 基于机位等待策略的航班调整方案
Table 4. Flight adjustment plan based on stand holding strategy
航班号 原推出时刻 新推出时刻 DKH1005 8:06 8:17 CSH9301 8:13 8:26 CSH9463 8:23 8:34 CQH8887 8:48 8:36 表 5 3种策略的滑行时间与成本汇总
Table 5. Summary of taxiing time and cost for three strategies
参数 滑行策略 正点推出 机位等待 速度优化 总排队时间/s 1413 842 508 总滑行时间/s 9684 9113 7506 总滑行时间成本/元 27272.24 25663.46 21773.79 总滑行成本/元 34296.68 32348.62 29991.66 表 6 3种策略的燃油与排放结果汇总
Table 6. Summary of fuel and emission result for three strategies
参数 滑行策略 正点推出 机位等待 速度优化 总燃油消耗/kg 1191.91 1138.66 1369.75 总污染物排放/kg 56.41 50.98 47.52 总污染物排放成本/元 1064.89 991.85 1369.11 -
[1] CARR F R.Stochastic modeling and control of airport surface traffic[D]. Cambridge: Massachusetts Institute of Technology, 2001. [2] ATKIN J A, BURKE E K, GREENWOOD J S.A comparison of two methods for reducing take-off delay at London Heathrow airport[J]. Journal of Scheduling, 2011, 14(5):409-421. doi: 10.1007/s10951-011-0228-y [3] RAVIZZA S, ATKIN J A D, BURKE E K.A more realistic approach for airport ground movement optimization with stand holding[J]. Journal of Scheduling, 2014, 17(5):507-520. doi: 10.1007/s10951-013-0323-3 [4] 赵向领, 唐建勋, 卢飞.航班延迟推出策略及虚拟队列长度灵敏度分析[J].四川大学学报(工程科学版), 2016, 48(3):115-123. http://d.old.wanfangdata.com.cn/Periodical/scdxxb-gckx201603015ZHAO X L, TANG J X, LU F.Strategy analysis for delayed fights pushback and sensitivity analysis of the length of virtual queue[J]. Journal of Sichuan University(Engineering Science Edition), 2016, 48(3):115-123(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/scdxxb-gckx201603015 [5] CHEN J, WEISZER M, STEWART P.Optimal speed profile generation for airport ground movement with consideration of emissions[C]//18th IEEE International Conference on Intelligent Transportation Systems.Piscataway, NJ: IEEE Press, 2015: 1797-1802. [6] NIKOLERIS T, GUPTA G, KISTLER M.Detailed estimation of fuel consumption and emissions during aircraft taxi operations at Dallas/Fort Worth International Airport[J]. Transport Research Part D:Transport & Environment, 2011, 16(4):302-308. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=03564c0c670e02a903d0bcbbcd44373f [7] EVERTSE C. A low emissions taxi movement planning tool[D]. Delft: Delft University of Technology, 2014. [8] CHEN J, WEISZER M, STEWART P, et al.Toward a more realistic, cost-effective and greener ground movement through active routing-part Ⅰ:Optimal speed profile generation.[J] IEEE Transactions on Intelligent Transportation Systems, 2016, 17(5):1196-1209. doi: 10.1109/TITS.2015.2477350 [9] 陈琳, 胡荣, 郑丽君, 等.考虑环境成本的航班滑行等待成本研究[J].中国民航大学学报, 2018, 36(2):28-32. doi: 10.3969/j.issn.1674-5590.2018.02.007CHEN L, HU R, ZHENG L J, et al.Study on the cost of flight delays during the taxi-out and waiting period with the consideration of environmental cost[J]. Journal of Civil Aviation University of China, 2018, 36(2):28-32(in Chinese). doi: 10.3969/j.issn.1674-5590.2018.02.007 [10] SIMAIAKIS I, BALAKRISHNAN H, KHADILKAR H, et al.Demonstration of reduced airport congestion through pushback rate control[J]. Transportation Research Part A:Policy and Practice, 2014, 66(1):251-267. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8ad1fce422b6297f7f89aef1c6963839 [11] SIMAIAKIS I, SANDBERG M, BALAKRISHNAN H.Dynamic control of airport departures:Algorithm development and field evaluation[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(1):285-295. [12] 孙广义, 刘长有.基于蜂群算法的飞机滑行路径优化[J].航空计算技术, 2016, 46(1):56-59. doi: 10.3969/j.issn.1671-654X.2016.01.014SUN G Y, LIU C Y.Optimization of aircraft taxiing path based on artificial bees colony[J]. Aeronautical Computing Technique, 2016, 46(1):56-59(in Chinese). doi: 10.3969/j.issn.1671-654X.2016.01.014 [13] CHERIE L.The economic benefits and environmental costs of airport operations:Taiwan Taoyuan International Airport[J]. Journal of Air Transport Management, 2011, 17(6):360-363. doi: 10.1016/j.jairtraman.2011.02.006 [14] 李雄, 刘光才, 颜明池.航班延误引发的航空公司及旅客经济损失[J].系统工程, 2007, 25(12):20-23. doi: 10.3969/j.issn.1001-4098.2007.12.004LI X, LIU G C, YAN M C.The economic loss of airlines and passengers caused by flight delays[J]. Systems Engineering, 2007, 25(12):20-23(in Chinese). doi: 10.3969/j.issn.1001-4098.2007.12.004