留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低速修正的可压缩求解器对湍流模拟精度的影响

李彦苏 张坤 何承军 阎超

李彦苏, 张坤, 何承军, 等 . 低速修正的可压缩求解器对湍流模拟精度的影响[J]. 北京航空航天大学学报, 2019, 45(11): 2199-2206. doi: 10.13700/j.bh.1001-5965.2019.0129
引用本文: 李彦苏, 张坤, 何承军, 等 . 低速修正的可压缩求解器对湍流模拟精度的影响[J]. 北京航空航天大学学报, 2019, 45(11): 2199-2206. doi: 10.13700/j.bh.1001-5965.2019.0129
LI Yansu, ZHANG Kun, HE Chengjun, et al. Effect of low-speed modification of compressible solver on turbulence simulation accuracy[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(11): 2199-2206. doi: 10.13700/j.bh.1001-5965.2019.0129(in Chinese)
Citation: LI Yansu, ZHANG Kun, HE Chengjun, et al. Effect of low-speed modification of compressible solver on turbulence simulation accuracy[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(11): 2199-2206. doi: 10.13700/j.bh.1001-5965.2019.0129(in Chinese)

低速修正的可压缩求解器对湍流模拟精度的影响

doi: 10.13700/j.bh.1001-5965.2019.0129
详细信息
    作者简介:

    李彦苏  女, 博士, 工程师。主要研究方向:计算流体力学

    通讯作者:

    李彦苏.E-mail:yansu_li@126.com

  • 中图分类号: V211.3

Effect of low-speed modification of compressible solver on turbulence simulation accuracy

More Information
  • 摘要:

    修正可压缩求解器能提高其对高速湍流中低速区的模拟精度,但低速修正效果受到求解器、计算格式精度、网格量等多因素影响,难以直接评估。研究了不同阶数、分辨率、网格量下,有无低速修正的可压缩求解器对复杂湍流模拟的影响。通过泰勒-格林涡算例,定量分析了不同结果的差异。结果表明:不同网格量、计算方法组合下,低速修正对结果的影响不同。网格量较小、重构格式精度较低的情况下,低速修正方法能够有效提高计算精度。

     

  • 图 1  不同重构格式的分辨率特性曲线

    Figure 1.  Resolution properties of different reconstruction schemes

    图 2  体平均动能随时间变化曲线(网格间距2π/64)

    Figure 2.  Variation of volume-averaged kinetic energy with time under grid space 2π/64

    图 3  动能耗散率随时间变化曲线(网格间距2π/64)

    Figure 3.  Variation of energy dissipation rate with time under grid space 2π/64

    图 4  体平均动能随时间变化曲线(网格间距2π/64和2π/128)

    Figure 4.  Variation of volume-averaged kinetic energy with time (grid space 2π/64 and 2π/128)

    图 5  动能耗散率随时间变化曲线(网格间距2π/64和2π/128)

    Figure 5.  Variation of energy dissipation rate with time (grid space 2π/64 and 2π/128)

    图 6  不同格式和网格量下体平均动能误差柱状图

    Figure 6.  Histogram of volume-averaged kinetic energy error for different schemes with different grids

    图 7  不同格式和网格量下动能耗散率误差柱状图

    Figure 7.  Histogram of energy dissipation rate error for different schemes with different grids

    图 8  不同网格量下Roe和LMRoe通量格式的计算差异(体平均动能)

    Figure 8.  Calculation difference of Roe and LMRoe flux schemes with different amounts of grid (volume-averaged kinetic energy)

    图 9  不同网格量下Roe和LMRoe通量格式的计算差异(动能耗散率)

    Figure 9.  Calculation difference of Roe and LMRoe flux schemes with different amounts of grid (energy dissipation rate)

    表  1  网格间距2π/64时不同通量格式结果的误差比值

    Table  1.   Ratio of two flux schemes' result errors with grid space being 2π/64

    重构格式 体平均动能 动能耗散率
    WENO3 0.36 0.57
    WENO5 0.63 0.61
    WENO7 0.69 0.75
    compact5 1.04 1.00
    下载: 导出CSV

    表  2  网格间距2π/128时不同通量格式结果的误差比值

    Table  2.   Ratio of two flux schemes' result errors with grid space being 2π/128

    重构格式 体平均动能 动能耗散率
    WENO5 0.56 0.57
    compact5 1.85 0.76
    下载: 导出CSV
  • [1] 傅德薰, 马延文, 李新亮, 等.可压缩湍流直接数值模拟[M].北京:科学出版社, 2010.

    FU D X, MA Y W, LI X L, et al.Direct numerical simulations for compressible turbulence[M].Beijing:Science Press, 2010(in Chinese).
    [2] 屈峰.高分辨率格式的研究及其应用[D].北京: 北京航空航天大学, 2015.

    QU F.Research and application of high resolution schemes[D].Beijing: Beihang University, 2015(in Chinese).
    [3] WEISS J M, SMITH W A.Preconditioning applied to variable and constant density flows[J].AIAA Journal, 1995, 33(11):2050-2057. doi: 10.2514/3.12946
    [4] LIOU M S.A sequel to AUSM.Part Ⅱ:AUSM+-up for all speeds[J].Journal of Computational Physics, 2006, 214(1):137-170. doi: 10.1016-j.jcp.2005.09.020/
    [5] KITAMURA K, SHIMA E.Towards shock-stable and accurate hypersonic heating computations:A new pressure flux for AUSM-family schemes[J].Journal of Computational Physics, 2013, 245:62-83. doi: 10.1016/j.jcp.2013.02.046
    [6] RIEPER F.A low-Mach number fix for Roe's approximate Riemann solver[J].Journal of Computational Physics, 2011, 230(13):5263-5287. doi: 10.1016/j.jcp.2011.03.025
    [7] FILLION P, CHANOINE A, DELLACHERIE S, et al.FLICA-OVAP:A new platform for core thermal-hydraulic studies[J].Nuclear Engineering and Design, 2011, 241(11):4348-4358. doi: 10.1016/j.nucengdes.2011.04.048
    [8] LI X, GU C.An all-speed roe-type scheme and its asymptotic analysis of low Mach number behaviour[J].Journal of Computational Physics, 2008, 227(10):5144-5159. doi: 10.1016/j.jcp.2008.01.037
    [9] 阎超.计算流体力学方法及应用[M].北京:北京航空航天大学出版社, 2006.

    YAN C.Method and application of computational fluid dynamics[M].Beijing:Beihang University Press, 2006(in Chinese).
    [10] GOTTLIEB S, SHU C W.Total variation diminishing Runge-Kutta schemes[J].Mathematics of computation of the American Mathematical Society, 1998, 67(221):73-85. doi: 10.1090/S0025-5718-98-00913-2
    [11] ROE P L.Approximate Riemann solvers, parameter vectors, and difference schemes[J].Journal of Computational Physics, 1997, 135(2):250-258. doi: 10.1006/jcph.1997.5705
    [12] JIANG G, SHU C.Efficient implementation of weighted ENO schemes[J].Journal of Computational Physics, 1996, 126(1):202-228. doi: 10.1006/jcph.1996.0130
    [13] PIROZZOLI S.On the spectral properties of shock-capturing schemes[J].Journal of Computational Physics, 2006, 219(2):489-497. doi: 10.1016/j.jcp.2006.07.009
    [14] FAUCONNIER D, DICK E.On the spectral and conservation properties of nonlinear discretization operators[J].Journal of Computational Physics, 2011, 230(12):4488-4518. doi: 10.1016/j.jcp.2011.02.025
    [15] BRACHET M E, MEIRON D I, ORSZAG S A, et al.Small-scale structure of the Taylor-Green vortex[J].Journal of Fluid Mechanics, 1983, 130:411-452. doi: 10.1017/S0022112083001159
    [16] DEBONIS J.Solutions of the Taylor-Green vortex problem using high-resolution explicit finite difference methods: AIAA-2013-0382[R].Reston: AIAA, 2013.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  554
  • HTML全文浏览量:  44
  • PDF下载量:  295
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-27
  • 录用日期:  2019-06-21
  • 网络出版日期:  2019-11-20

目录

    /

    返回文章
    返回
    常见问答