留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于随机相关的电子部件二元加速退化可靠性评估

盖炳良 滕克难 王浩伟 王文双 陈健 宦婧

盖炳良, 滕克难, 王浩伟, 等 . 基于随机相关的电子部件二元加速退化可靠性评估[J]. 北京航空航天大学学报, 2019, 45(11): 2237-2246. doi: 10.13700/j.bh.1001-5965.2019.0130
引用本文: 盖炳良, 滕克难, 王浩伟, 等 . 基于随机相关的电子部件二元加速退化可靠性评估[J]. 北京航空航天大学学报, 2019, 45(11): 2237-2246. doi: 10.13700/j.bh.1001-5965.2019.0130
GAI Bingliang, TENG Kenan, WANG Haowei, et al. Reliability assessment for electronic components with bivariate accelerated degradation based on random correlation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(11): 2237-2246. doi: 10.13700/j.bh.1001-5965.2019.0130(in Chinese)
Citation: GAI Bingliang, TENG Kenan, WANG Haowei, et al. Reliability assessment for electronic components with bivariate accelerated degradation based on random correlation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(11): 2237-2246. doi: 10.13700/j.bh.1001-5965.2019.0130(in Chinese)

基于随机相关的电子部件二元加速退化可靠性评估

doi: 10.13700/j.bh.1001-5965.2019.0130
基金项目: 

国家自然科学基金 51605487

详细信息
    作者简介:

    盖炳良  男, 博士研究生。主要研究方向:装备可靠性评估、加速试验技术等

    滕克难  男, 博士, 教授, 博士生导师。主要研究方向:装备延寿理论与技术

    通讯作者:

    滕克难.E-mail:Tengkn@sina.com

  • 中图分类号: TB114.3

Reliability assessment for electronic components with bivariate accelerated degradation based on random correlation

Funds: 

National Natural Science Foundation of China 51605487

More Information
  • 摘要:

    针对加速应力下电子部件二元相关退化可靠性分析难题,提出一种基于随机相关的可靠性分析方法。采用考虑个体差异的Wiener过程模型建立边缘退化过程模型,并基于加速因子不变原则建立了模型参数与加速应力的关系;构建了基于Copula函数的随机相关模型,采用两阶段贝叶斯参数估计方法进行参数估计,综合运用散点图、偏差信息准则(DIC)值以及Kendall τ的非参数估计值等方法进行随机相关模型选择,并采用蒙特卡罗仿真方法进行可靠度计算。最后采用实例验证了所提方法有效性,为考虑个体差异的贮存可靠性评估提供了技术支撑。

     

  • 图 1  二元相关退化建模框架

    Figure 1.  Framework of bivariate correlation degradation modeling

    图 2  X1X2的随机参数箱线图

    Figure 2.  Boxplots of random parameters of X1 and X2

    图 3  3个加速应力下的边缘退化增量累积分布函数取值的散点图

    Figure 3.  Scatter plots of CDFs of degradation increments under three accelerated stresses

    图 4  边缘退化增量累积分布函数取值的散点图

    Figure 4.  Scatter plot of CDFs of degradation increments

    图 5  随机相关性模型参数的箱线图

    Figure 5.  Boxplots of parameters of random correlation model

    图 6  可靠度曲线

    Figure 6.  Reliability curves

    表  1  Copula函数

    Table  1.   Copula function

    Copula函数 分布函数C(u, v; θ) θ τ
    Frank
    Gaussian
    Gumbel
    Clayton
    下载: 导出CSV

    表  2  边缘分布参数估计值

    Table  2.   Parameter estimations of marginal distribution

    寿命表征参数 参数 均值 置信区间(置信水平为0.95) 先验
    X1 RDV(1) 1.338 [0.111 9,2.778] U(0, 100)
    RDV(2) 906.2 [689.1,997.3] U(0, 1 000)
    RDV(3) 0.530 3 [0.016 53,1.678] U(0, 100)
    RDV(4) 0.444 5 [0.018 11,1.206] U(0, 100)
    0.259 6 [0.158 9,0.359 6] U(0, 10)
    4.448 [1.288,9.462] U(0, 10)
    X2 RDV(1) 2.901 [1.23,4.303] U(0, 100)
    RDV(2) 823.4 [465.8,994.4] U(0, 1 000)
    RDV(3) 0.651 5 [0.021 36, 1.983] U(0, 100)
    RDV(4) 1.058 [0.084 9, 2.11] U(0, 100)
    0.217 [0.126 9, 0.309 5] U(0, 10)
    6.027 [1.729, 9.793] U(0, 10)
    下载: 导出CSV

    表  3  Copula函数参数估计值

    Table  3.   Parameter estimations of Copula function

    模型 参数 均值 先验 DIC值 τ
    Gaussian模型A θ 0.158 1 U(-1, 1) 179 0.101 1
    Frank模型A θ 2.897 U(0, 100) -14.07 0.298 1
    Gumbel模型A θ 1.302 U(1, 100) -11.46 0.232 0
    Clayton模型A θ 0.558 U(0, 100) -12.18 0.218 2
    下载: 导出CSV

    表  4  随机相关模型参数估计值

    Table  4.   Parameter estimations of random correlation models

    模型 参数 均值 置信区间(置信水平为0.95) 先验 DIC值
    A θ 2.897 [1.493,4.288] (0, 100) -14.07
    B γB(1) 1.433 [0.544 7,2.195] (0, 100) -13.64
    γB(2) 190.4 [8.855,388.4] (0, 400)
    C aθ 3.677 [1.615,6.332] (0, 100) -16.45
    bθ 2.357 [0.228 2,5.605] (0, 100)
    D γD(1) 14.2 [0.904 6,43.15] (0, 100)-13.61
    γD(2) 9 280 [154.6,19 590] (0, 20 000)
    bθ 4.29 [0.727 5,9.157] (0, 100)
    E γE(1) 2.706 [0.159 9, 5.845] (0, 100) -15.18
    γE(2) 1 139 [90.83,1 963] (0, 2 000)
    aθ 3.416 [1.628,5.748] (0, 100)
    F γF(1) 3.161 [0.905,6.113] (0, 100) -13.66
    γF(2) 813.9 [29.4,1 909] (0, 2 000)
    γF(3) 2.193 [0.138 2,4.711] (0, 100)
    γF(4) 830 [58.14,1 471] (0, 1 500)
    下载: 导出CSV
  • [1] WANG X.Wiener processes with random effects for degradation data[J].Journal of Multivariate Analysis, 2010, 101(1):340-351. https://www.sciencedirect.com/science/article/pii/S0047259X08002777
    [2] YE Z S, CHEN N, SHEN Y.A new class of Wiener process models for degradation analysis[J].Reliability Engineering & System Safety, 2015, 139(1):58-67. http://cn.bing.com/academic/profile?id=c67a6fbe7cbe36b0b40dd877b1b06dc0&encoded=0&v=paper_preview&mkt=zh-cn
    [3] RODRÍGUEZ-PICÓN L.Reliability assessment for systems with two performance characteristics based on gamma processes with marginal heterogeneous random effects[J].Eksploatacja I Niezawodnosc-Maintenance and Reliability, 2017, 19(1):8-18.
    [4] PENG W W, LI Y, YANG Y, et al.Inverse Gaussian process models for degradation analysis:A Baysian perspective[J].Reliability Engineering & System Safety, 2014, 130(6):175-189. http://cn.bing.com/academic/profile?id=38912dfb94e04b37c75fa3406274a738&encoded=0&v=paper_preview&mkt=zh-cn
    [5] YE Z S, CHEN N.The inverse Gaussian process as a degradation model[J].Technometrics, 2014, 56(3):302-311. doi: 10.1080/00401706.2013.830074
    [6] PADGETT W J, TOMLINSON M A.Inference from accelerated degradation and failure data based on Guassian process models[J].Lifetime Data Analysis, 2004, 10(2):191-206. doi: 10.1023/B:LIDA.0000030203.49001.b6
    [7] 潘正强, 周经伦, 彭宝华.基于Wiener过程的多应力加速退化试验设计[J].系统工程理论与实践, 2009, 29(8):64-71. doi: 10.3321/j.issn:1000-6788.2009.08.008

    PAN Z Q, ZHOU J L, PENG B H.Design of accelerated degradation tests with several stresses based on Wiener process[J].Systems Engineering-Theory & Practice, 2009, 29(8):64-71(in Chinese). doi: 10.3321/j.issn:1000-6788.2009.08.008
    [8] LIM H, YUM B J.Optimal design of accelerated degradation tests based on Wiener process models[J].Journal of Applied Statistics, 2011, 38(2):309-325. doi: 10.1080/02664760903406488
    [9] SUNG S, YUM B J.Optimal design of step-stress accelerated degradation tests based on the Wiener degradation process[J].Quality Technology & Quantitative Management, 2016, 13(4):367-393. http://cn.bing.com/academic/profile?id=ef1da9d81d85cfbbf8eabb592aac231c&encoded=0&v=paper_preview&mkt=zh-cn
    [10] WHITMORE G A, SCHENKELBERG F.Modelling accelerated degradation data using Wiener diffusion with a time scale transformation[J].Lifetime Data Analysis, 1997, 3(1):27-45. doi: 10.1023/A:1009664101413
    [11] HAN W, YU Z, MA X B.Mechanism equivalence in designing optimum step-stress accelerated degradation test plan under Wiener process[J].IEEE Access, 2018, 6:4440-4451. doi: 10.1109/ACCESS.2018.2789518
    [12] 王浩伟, 徐廷学, 赵建忠.融合加速退化和现场实测退化数据的剩余寿命预测方法[J].航空学报, 2014, 35(12):3350-3357. http://d.old.wanfangdata.com.cn/Periodical/hkxb201412016

    WANG H W, XU T X, ZHAO J Z.Residual life prediction method fusing accelerated degradation data and field degradation data[J].Acta Aeronautica et Astronautica Sinica, 2014, 35(12):3350-3357(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb201412016
    [13] 盖炳良, 滕克难, 王浩伟, 等.基于加速因子的Wiener退化产品可靠性评估方法[J].战术导弹技术, 2017(6):25-30. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zsddjs201706005

    GAI B L, TENG K N, WANG H W, et al.Reliability assessment approach for Wiener-type degradation based on acceleration factor[J].Tactical Missile Technology, 2017(6):25-30(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zsddjs201706005
    [14] 盖炳良, 滕克难, 王浩伟, 等.基于加速因子不变原则的加速度计可靠性分析[J].中国惯性技术学报, 2018, 26(6):835-840. http://d.old.wanfangdata.com.cn/Periodical/zggxjsxb201806022

    GAI B L, TENG K N, WANG H W, et al.Reliability analysis for accelerometers based on invariant principle of acceleration factor[J].Journal of Chinese Inertial Technology, 2018, 26(6):835-840(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/zggxjsxb201806022
    [15] 王浩伟, 滕克难, 李军亮.随机环境应力冲击下基于多参数相关退化的导弹部件寿命预测[J].航空学报, 2016, 37(11):3404-3412. http://d.old.wanfangdata.com.cn/Periodical/hkxb201611018

    WANG H W, TENG K N, LI J L.Lifetime prediction for missile components based on multiple parameters correlative degrading with random shocks of environmental stresses[J].Acta Aeronautica et Astronautica Sinica, 2016, 37(11):3404-3412(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb201611018
    [16] 盖炳良, 滕克难, 唐金国, 等.基于马氏距离的二元退化可靠性分析[J].系统工程与电子技术, 2019, 41(3):686-692. http://d.old.wanfangdata.com.cn/Periodical/xtgcydzjs201903032

    GAI B L, TENG K N, TANG J G, et al.Reliability analysis for bivariate degradation process based on Mahalanobis distance[J].Systems Engineering and Electronics, 2019, 41(3):686-692(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/xtgcydzjs201903032
    [17] 张志鹏.系统多元相关退化过程建模及可靠度评估方法研究[D].成都: 电子科技大学, 2016: 19-20.

    ZHANG Z P.Multivariate correlated degradation modeling and reliability assessment for engineering systems[D].Chengdu: University of Electronic Science and Technology of China, 2016: 19-20(in Chinese).
    [18] 申晔.多退化系统加速退化试验方法与应用研究[D].长沙: 国防科学技术大学, 2011: 41-43.

    SHEN Y.Research on methods and applications of accelerated degradation testing for multiple degradation system[D].Changsha: National University of Defense Technology, 2011: 41-43(in Chinese).
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  745
  • HTML全文浏览量:  99
  • PDF下载量:  427
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-27
  • 录用日期:  2019-05-28
  • 网络出版日期:  2019-11-20

目录

    /

    返回文章
    返回
    常见问答