留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含函数型自变量回归模型中的变量选择

刘科生 王思洋

刘科生, 王思洋. 含函数型自变量回归模型中的变量选择[J]. 北京航空航天大学学报, 2019, 45(10): 1990-1994. doi: 10.13700/j.bh.1001-5965.2019.0157
引用本文: 刘科生, 王思洋. 含函数型自变量回归模型中的变量选择[J]. 北京航空航天大学学报, 2019, 45(10): 1990-1994. doi: 10.13700/j.bh.1001-5965.2019.0157
LIU Kesheng, WANG Siyang. Variable selection in regression models including functional data predictors[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(10): 1990-1994. doi: 10.13700/j.bh.1001-5965.2019.0157(in Chinese)
Citation: LIU Kesheng, WANG Siyang. Variable selection in regression models including functional data predictors[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(10): 1990-1994. doi: 10.13700/j.bh.1001-5965.2019.0157(in Chinese)

含函数型自变量回归模型中的变量选择

doi: 10.13700/j.bh.1001-5965.2019.0157
基金项目: 

国家自然科学基金 11501586

国家自然科学基金 71420107025

中央财经大学科研创新团队支持计划 

详细信息
    作者简介:

    刘科生   男, 博士研究生, 助理研究员。主要研究方向:教育大数据、复杂数据分析

    王思洋   女, 博士, 副教授, 硕士生导师。主要研究方向:高维数据分析、信用风险建模

    通讯作者:

    王思洋, E-mail: siyangw@163.com

  • 中图分类号: O212

Variable selection in regression models including functional data predictors

Funds: 

National Natural Science Foundation of China 11501586

National Natural Science Foundation of China 71420107025

Program for Innovation Research in Central University of Finance and Economics 

More Information
  • 摘要:

    针对含有函数型和多元向量数据的回归模型中变量选择和参数估计问题进行研究,扩展了函数型数据分析和变量选择方法的应用范围。首先,函数型自变量基于函数型主成分基函数空间进行投影;然后,对投影后的函数型自变量(按组)及多元向量自变量采用惩罚变量选择方法,同时估计相应的系数。惩罚项调节参数采用自适应调节参数,损失函数采用中位绝对损失函数,以此为例,通过引入松弛变量将估计算法转化为求解线性规划问题,算法复杂度低。数值模拟结果表明,所提方法对于含函数型自变量回归模型的变量选择和参数估计均具有良好效果。

     

  • 表  1  正态误差下的数据模拟结果

    Table  1.   Data simulation results with normal error

    (n, σ) 统计指标 TP FP RMSE Bias
    (100, 0.05) Mean 2 0.22 0.028 2 0.005 8
    Sd 0 0.52 0.007 6 0.004 4
    (100, 0.2) Mean 2 0.34 0.084 4 0.022 9
    Sd 0 0.61 0.033 0 0.017 9
    (300, 0.05) Mean 2 0.09 0.016 8 0.002 7
    Sd 0 0.30 0.004 8 0.002 0
    (300, 0.2) Mean 2 0.18 0.049 1 0.012 0
    Sd 0 0.42 0.019 5 0.009 8
    下载: 导出CSV

    表  2  柯西误差下的数据模拟结果

    Table  2.   Data simulation results with Cauchy error

    (n, σ) 统计指标 TP FP RMSE Bias
    (100, 0.05) Mean 2 0.01 0.036 0 0.008 3
    Sd 0 0.07 0.007 6 0.004 4
    (100, 0.2) Mean 2 0.03 0.116 8 0.035 5
    Sd 0 0.16 0.054 7 0.030 1
    (300, 0.05) Mean 2 0 0.019 5 0.003 8
    Sd 0 0 0.006 5 0.002 8
    (300, 0.2) Mean 2 0.12 0.062 1 0.014 0
    Sd 0 0.32 0.026 6 0.011 6
    下载: 导出CSV
  • [1] FERRATY F.Recent advances in functional data analysis and related topics[M].Berlin:Springer, 2011.
    [2] CHEN S T, XIAO L, STAICU A M.A smoothing-based goodness-of-fit test of covariance for functional data[J].Biometrics, 2018, 75(2):562-571. http://cn.bing.com/academic/profile?id=db7400a5bd4adec6d3ad20b631b41138&encoded=0&v=paper_preview&mkt=zh-cn
    [3] CUEVAS A.A partial overview of the theory of statistics with functional data[J].Journal of Statistical Planning and Inference, 2014, 147:1-23. doi: 10.1016/j.jspi.2013.04.002
    [4] PARK J, AHN J.Clustering multivariate functional data with phase variation[J].Biometrics, 2017, 73(1):324-333. doi: 10.1111/biom.12546
    [5] KATO K.Estimation in functional linear quantile regression[J].Annals of Statistics, 2012, 40(6):3108-3136. doi: 10.1214/12-AOS1066
    [6] TIBSHIRANI R.Regression shrinkage and selection via the Lasso[J].Journal of the Royal Statistical Society.Series B(Statistical Methodology), 1996, 58(1):267-288. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3410531
    [7] HALL P, HOROWITZ J L.Methodology and convergence rates for functional linear regression[J].Annals of Statistics, 2007, 35(1):70-91. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_0708.0466
    [8] HALL P, HOSSEINI-NASAB M.On properties of functional principal components analysis[J].Journal of the Royal Statistical Society.Series B(Statistical Methodology), 2005, 68(1):109-126. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_physics%2f9811014
    [9] LIN X, LU T, YAN F, et al.Mean residual life regression with functional principal component analysis on longitudinal data for dynamic prediction[J].Biometrics, 2018, 74(4):1482-1491. doi: 10.1111/biom.12876
    [10] HUANG L, ZHAO J, WANG H, et al.Robust shrinkage estimation and selection for functional multiple linear model through LAD loss[J].Computational Statistics & Data Analysis, 2016, 103:384-400. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=34aa8b628f3763fa2f1eca7e0f4904e8
    [11] QIAN J, SU L.Shrinkage estimation of common breaks in panel data models via adaptive group fused Lasso[J].Journal of Econometrics, 2016, 191(1):86-109. doi: 10.1016/j.jeconom.2015.09.004
    [12] VINCENT M, HANSEN N R.Sparse group lasso and high dimensional multinomial classification[J].Computational Statistics & Data Analysis, 2014, 71:771-786. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0232316882/
    [13] LIU X, LIN Y, WANG Z.Group variable selection for relative error regression[J].Journal of Statistical Planning and Inference, 2016, 175:40-50. doi: 10.1016/j.jspi.2016.02.006
    [14] WANG H J, LI D, HE X.Estimation of high conditional quantiles for heavy-tailed distributions[J].Journal of the American Statistical Association, 2012, 107(500):1453-1464. doi: 10.1080/01621459.2012.716382
    [15] BANG S, JHUN M.Simultaneous estimation and factor selection in quantile regression via adaptive sup-norm regularization[J].Computational Statistics & Data Analysis, 2012, 56(4):813-826. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0bd0ee21882eb569122d6a81ac6c667a
    [16] WANG T, ZHU L.Consistent tuning parameter selection in high dimensional sparse linear regression[J].Journal of Multivariate Analysis, 2011, 102(7):1141-1151. doi: 10.1016/j.jmva.2011.03.007
    [17] HIROSE K, TATEISHI S, KONISHI S.Tuning parameter selection in sparse regression modeling[J].Computational Statistics & Data Analysis, 2013, 59:28-40. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1109.2411
  • 加载中
表(2)
计量
  • 文章访问数:  920
  • HTML全文浏览量:  123
  • PDF下载量:  362
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-11
  • 录用日期:  2019-04-26
  • 网络出版日期:  2019-10-20

目录

    /

    返回文章
    返回
    常见问答