留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于三维点云模型的空间目标光学图像生成技术

陆婷婷 李潇 张尧 阎岩 杨卫东

陆婷婷, 李潇, 张尧, 等 . 基于三维点云模型的空间目标光学图像生成技术[J]. 北京航空航天大学学报, 2020, 46(2): 274-286. doi: 10.13700/j.bh.1001-5965.2019.0189
引用本文: 陆婷婷, 李潇, 张尧, 等 . 基于三维点云模型的空间目标光学图像生成技术[J]. 北京航空航天大学学报, 2020, 46(2): 274-286. doi: 10.13700/j.bh.1001-5965.2019.0189
LU Tingting, LI Xiao, ZHANG Yao, et al. A technology for generation of space object optical image based on 3D point cloud model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(2): 274-286. doi: 10.13700/j.bh.1001-5965.2019.0189(in Chinese)
Citation: LU Tingting, LI Xiao, ZHANG Yao, et al. A technology for generation of space object optical image based on 3D point cloud model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(2): 274-286. doi: 10.13700/j.bh.1001-5965.2019.0189(in Chinese)

基于三维点云模型的空间目标光学图像生成技术

doi: 10.13700/j.bh.1001-5965.2019.0189
详细信息
    作者简介:

    陆婷婷  女,博士,工程师。主要研究方向:视觉导航、图像处理、人工智能、指挥控制。E-mail:tingtingspring@163.com

    通讯作者:

    陆婷婷. E-mail:tingtingspring@163.com

  • 中图分类号: TP407.8;V423.6

A technology for generation of space object optical image based on 3D point cloud model

More Information
  • 摘要:

    空间探测任务中大量先验图像数据的缺乏,使得基于光学图像的态势感知和导航算法无法被有效定量测试和评估。针对此问题,提出了一种基于三维点云模型和射影变换基本理论的空间目标光学图像生成方法。在完成对空间目标三维点云模型和仿真摄像机模型构建基础之上,利用射影变换基本理论依次计算像平面所有像素点与空间目标三维点云模型空间点的对应关系,并基于Lambertian漫反射模型和相对应空间目标三维点云模型空间点的光照方向,得到所有像素点的灰度值,从而生成给定空间目标的光学图像。大量仿真实验表明:与传统的基于解析模型的仿真图像生成方法相比,所提的空间目标光学图像生成技术能够以更快的速度生成更加真实的仿真图像,且生成的仿真图像可以广泛应用于椭圆拟合、陨石坑检测、着陆器视觉导航、航天器交会对接、空间目标跟踪等典型空间应用算法的定性与定量评估。

     

  • 图 1  空间目标光学图像生成技术总体框架

    Figure 1.  Overall framework of space object optical image generation technique

    图 2  仿真摄像机模型及相关坐标系定义

    Figure 2.  Simulated camera imaging model and definition of relevant coordinate systems

    图 3  仿真摄像机模型构建基本流程

    Figure 3.  Basic process for constructing simulated camera imaging model

    图 4  月球表面三维点云模型示意图

    Figure 4.  Schematic diagram of 3D point cloud model of lunar surface

    图 5  图像三角面片及其外接矩形

    Figure 5.  Imaged triangle patch and its circumscribed rectangle

    图 6  太阳高度角和方位角示意图

    Figure 6.  Schematic diagram of solar elevation and azimuth

    图 7  空间目标仿真图像生成系统软件示意图

    Figure 7.  Schematic diagram of software of space object simulated image generation system

    图 8  典型空间目标三维点云模型

    Figure 8.  Three-dimensional point cloud model of typical space objects

    图 9  仿真实验验证内容

    Figure 9.  Verified concepts of simulation experiments

    图 10  本文算法生成的Vesta小行星和Eros小行星仿真图像与真实图像对比

    Figure 10.  Comparison between simulated images generated by proposed algorithm and true images of Vesta asteroid and Eros asteroid

    图 11  空间目标仿真图像生成实验结果

    Figure 11.  Experimental results of simulation image generation of space objects

    图 12  不同算法仿真图像生成对比实验结果

    Figure 12.  Comparison of experimental results of simulation image generation between different algorithms

    图 13  Snowman陨石坑区域三维点云模型及真实图像

    Figure 13.  Three-dimensional point cloud model and true image of Snowman crater area

    图 14  陨石坑仿真图像与太阳光照方向关系实验结果

    Figure 14.  Experimental results of relationship between crater simulated image and sunlight illumination direction

    图 15  陨石坑仿真图像与仿真摄像机高度关系实验结果

    Figure 15.  Experimental results of relationship between crater simulated image and simulated camera height

    图 16  陨石坑仿真图像与仿真摄像机姿态关系实验结果

    Figure 16.  Experimental results of relationship between crater simulated image and simulated camera attitude

    图 17  椭圆拟合算法验证实验结果

    Figure 17.  Experimental results of ellipse fitting algorithm verification

    图 18  着陆器视觉导航算法验证实验结果

    Figure 18.  Experimental results of lander visual navigation algorithm verification

    图 19  航天器交会对接算法验证实验结果

    Figure 19.  Experimental results of spacecraft rendezvous and docking algorithm verification

    图 20  空间目标跟踪算法验证实验结果

    Figure 20.  Experimental results of space object tracking algorithm verification

    表  1  着陆器视觉导航算法验证实验精度

    Table  1.   Experimental accuracy of lander visual navigation algorithm verification

    导航误差 Rheasilvia小行星 月球近地表面
    位置误差/m 0.01 0.012
    0.02 0.019
      0.015 0.009
    姿态误差/rad 0.01 0.014
    0.03 0.009
      0.013 0.021
    下载: 导出CSV

    表  2  航天器交会对接算法验证实验精度

    Table  2.   Experimental accuracy of spacecraft rendezvous and docking algorithm verification

    位姿误差 Triana卫星 Aurora卫星
    位置误差/m 0.02 0.019
      0.017 0.021
      0.009 0.018
    姿态误差/rad 0.03 0.008
    0.09 0.022
      0.016 0.013
    下载: 导出CSV

    表  3  不同分类器在陨石坑图像数据集和飞行器图像数据集上的分类结果

    Table  3.   Classification results of different classifiers on crater dataset and spacecraft dataset

    图像数据集 分类器类型 P R F1
    陨石坑 CNN 0.91 0.90 0.91
           AdaBoost 0.85 0.82 0.83
    飞行器 CNN 0.93 0.91 0.92
           AdaBoost 0.87 0.83 0.85
    下载: 导出CSV
  • [1] XIANG Y, SCHMIDT T, NARAYANAN V, et al.PoseCNN: A convolutional neural network for 6D object pose estimation in cluttered scenes[EB/OL].(2017-11-01)[2019-04-01].http://export.arxiv.org/abs/1711.00199. https://www.researchgate.net/publication/320796892_PoseCNN_A_Convolutional_Neural_Network_for_6D_Object_Pose_Estimation_in_Cluttered_Scenes
    [2] LIU C, HU W.Real-time geometric fitting and pose estimation for surface of revolution[J].Pattern Recognition, 2019, 85:90-108. doi: 10.1016/j.patcog.2018.08.002
    [3] CRIVELLARO A, RAD M, VERDIE Y, et al.Robust 3D object tracking from monocular images using stable parts[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(6):1465-1479. doi: 10.1109/TPAMI.2017.2708711
    [4] YU M, CUI H, TIAN Y.A new approach based on crater detection and matching for visual navigation in planetary landing[J].Advances in Space Research, 2014, 53(12):1810-1821. doi: 10.1016/j.asr.2013.04.011
    [5] ZHANG H, JIANG Z, ELGAMMAL A.Satellite recognition and pose estimation using homeomorphic manifold analysis[J].IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(1):785-792. doi: 10.1109/TAES.2014.130744
    [6] ESA.Pinpoint vision-based landings on moon, mars and asteroids[EB/OL].(2013-05-29)[2019-04-01].http://www.esa.int/Our_Activities/Space_Engineering_Technology/Pinpoint_vision-based_landings_on_Moon_Mars_and_asteroids. https://www.researchgate.net/publication/317345295_A_new_experimental_facility_for_testing_of_vision-based_GNC_algorithms_for_planetary_landing
    [7] GSA.TRON-Testbed for robotic optical navigation[EB/OL].(2017-03-29)[2019-04-01].http://www.ngcaerospace.com/space-systems/test-validation-services.
    [8] NGC.High-fidelity hardware-in-the-loop emulators[EB/OL].(2017-03-29)[2019-04-01].http://www.ngcaerospace.com/space-systems/test-validation-services/.
    [9] PARKES S M, MARTIN I.Virtual lunar landscapes for testing vision-guided lunar landers[C]//IEEE International Conference on Information Visualization.Piscataway, NJ: IEEE Press, 1999: 122-127. https://www.researchgate.net/publication/3811947_Virtual_Lunar_Landscapes_for_Testing_Vision-Guided_Lunar_Landers
    [10] STAR-Dundee.PANGU-Planet and asteroid natural scene generation utility[EB/OL].(2017-02-08)[2019-04-01].https://www.star-dundee.com/products/pangu-planet-and-asteroid-natural-scene-generation-utility.
    [11] LU T, HU W, JIANG Z.An effective algorithm for generation of crater gray image[C]//IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications.Piscataway, NJ: IEEE Press, 2015: 1-6. https://www.researchgate.net/publication/290194684_An_effective_algorithm_for_generation_of_crater_gray_image
    [12] SU Q, ZHAO Y, WU F, et al.Simulation of high resolution lunar's Sinus Iridum terrain[C]//IEEE Conference on Industrial Electronics and Applications.Piscataway, NJ: IEEE Press, 2011: 2589-2592.
    [13] LI J S, LIU W M, LAN C Z, et al.Fast algorithm for lunar craters simulation[M].Berlin:Springer, 2011.
    [14] 张玥, 李清毅, 许晓霞.月球表面地形数学建模方法[J].航天器环境工程, 2007, 24(6):341-343. doi: 10.3969/j.issn.1673-1379.2007.06.002

    ZHANG Y, LI Q Y, XU X X.Mathematical modeling of lunar surface terrain[J].Spacecraft Environment Engineering, 2007, 24(6):341-343(in Chinese). doi: 10.3969/j.issn.1673-1379.2007.06.002
    [15] 陈宝林.最优化理论与算法[M].2版.北京:清华大学出版社, 2005:10-23.

    CHEN B L.Theory and algorithms of optimization[M].2rd ed.Beijing:Tsinghua University Press, 2005:10-23(in Chinese).
    [16] 吴福朝.计算机视觉中的数学方法[M].北京:科学出版社, 2008:255-266.

    WU F C.Mathematics in computer vision[M].Beijing:Science Press, 2008:255-266(in Chinese).
    [17] AKENINE-MOLLER T, HAINES E.实时计算机图形学[M].2版.普建涛, 译.北京: 北京大学出版社, 2004: 40-50.

    AKENINE-MOLLER T, HAINES E.Real time graphics[M].2nd ed.PU J T, translated.Beijing: Peking University Press, 2004: 40-50(in Chinese).
    [18] NASA.Vesta[EB/OL].(2017-04-28)[2019-04-01].https://nasa3d.arc.nasa.gov/detail/vesta.
    [19] NASA.Eros[EB/OL].(2017-04-28)[2019-04-01].https://nasa3d.arc.nasa.gov/detail/eros.
    [20] The Planetary Society.Mosaic of the asteroid Vesta from the Dawn spacecraft[EB/OL].(2017-04-28)[2019-04-01].http://www.planetary.org/multimedia/space-images/small-bodies/vesta_mosaic_0006121-6124.html/.
    [21] Wikipedia.433 Eros[EB/OL].(2017-04-28)[2019-04-01].https://en.wikipedia.org/wiki/433_Eros.
    [22] LU T, HU W, LIU C, et al.Effective ellipse detector with polygonal curve and likelihood ratio test[J].IET Computer Vision, 2015, 9(6):914-925. doi: 10.1049/iet-cvi.2014.0347
    [23] LU C, HU W.Effective method for ellipse extraction and integration for spacecraft images[J].Optical Engineering, 2013, 52(5):057002. doi: 10.1117/1.OE.52.5.057002
    [24] LU T, HU W, LIU C, et al.Relative pose estimation of a lander using crater detection and matching[J].Optical Engineering, 2016, 55(2):023102. doi: 10.1117/1.OE.55.2.023102
    [25] LIU C, HU W.Relative pose estimation for cylinder-shaped spacecrafts using single image[J].IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(4):3036-3056. doi: 10.1109/TAES.2014.120757
    [26] COHEN J P, LO H Z, LU T, et al.Crater detection via convolutional neural networks[EB/OL].(2016-01-05)[2019-04-01].https://arxiv.org/abs/1601.00978.
    [27] DING W, STEPINSKI T F, MU Y, et al.Sub-kilometer crater discovery with boosting and transfer learning[J].ACM Transactions on Intelligent Systems and Technology, 2011, 2(4):39. http://sil.uc.edu/pdfFiles/tist11.pdf
  • 加载中
图(20) / 表(3)
计量
  • 文章访问数:  877
  • HTML全文浏览量:  238
  • PDF下载量:  209
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-28
  • 录用日期:  2019-07-05
  • 网络出版日期:  2020-02-20

目录

    /

    返回文章
    返回
    常见问答