-
摘要:
针对在轨服务等新型任务对航天器快速机动能力的大幅提高,研究了卫星基座和机械臂构成的空间多体系统的轨道、姿态和机械臂的一体化控制设计问题。首先,建立了空间多体系统的动力学模型;然后,基于退步控制思想,设计了卫星基座、姿态与机械臂一体化控制器,并证明了系统的稳定性,由于利用了空间多体系统的所有自由度,相比传统的基座停控或只控制基座姿态而轨道停轨的方法,极大地提高了系统的适应能力,可同时实现空间大范围的轨道转移、姿态机动,同时利用机械臂对目标进行精确操作控制。通过建立完整的空间多体系统仿真模型,对控制器进行仿真,达到了同时进行轨道、姿态及机械臂末端机动的控制目的,并验证了所提方法的有效性。
Abstract:The rapid maneuver ability is widely required for spacecraft aiming the on-orbit servicing tasks. The integrated orbit, attitude and manipulator control was designed for the space multi-body system, which is composed of the satellite base and manipulator. First, the dynamic model of the multi-body system was established. Then, the integrated orbit, attitude and manipulator controller was designed via back stepping method, and the stability of the system was proved. Since all the degrees of freedom are controlled, the abilities of the system to fulfill different tasks are markedly improved, compared to the traditional system whose orbit or attitude is free. Thus, the system with the integrated controller can fulfill simultaneous orbit transfer and attitude maneuver in a large range of space, and meanwhile the manipulator can operate and control accurately. Finally, by establishing complete multi-body system simulation model, the controller was simulated, and the goal of simultaneous orbit, attitude and manipulator control is achieved. The effectiveness of the proposed method is validated.
-
表 1 系统动力学与控制仿真参数
Table 1. Parameters of system dynamics and control simulation
-
[1] ODA M.On the dynamics and control of ETS-7 satellite and its robot arm[C]//Proceedings of the IEEE/RSJ/GI International Conference on Intelligent Robots and Systems.Piscataway, NJ: IEEE Press, 1994, 3: 1586-1593. https://www.researchgate.net/publication/3608977_On_the_dynamics_and_control_of_ETS-7_satellite_and_its_robot_arm [2] BARNHART D A, HUNTER R C, WESTON A R, et al.XSS-10 micro-satellite demonstration: AIAA-98-5298[R].Reston: AIAA, 1998. [3] 闻新, 王秀丽, 邓宝忠.美国试验小卫星XSS-11系统[J].中国航天, 2006(7):22-25. http://d.old.wanfangdata.com.cn/Periodical/zght200607010WEN X, WANG X L, DENG B Z.The US XSS-11 small satellite[J].Aerospace China, 2006(7):22-25(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/zght200607010 [4] STAMM S, MOTAGHEDI P.Orbital express capture system: Concept to reality[C]//Conference on Spacecraft Platforms and Infrastructure.Bellingham: SPIE, 2004, 5419: 78-91. [5] HU J C, WANG T S.Minimum base attitude disturbance planning for a space robot during target capture[J].Journal of Mechanisms and Robotics, 2018, 10(5):1-13. http://cn.bing.com/academic/profile?id=9e08171c804ad68cbb68c5b4c315385a&encoded=0&v=paper_preview&mkt=zh-cn [6] NAKAMURA Y, MUKHERJEE R.Nonholonomic path planning of space robots via a bidirectional approach[J].IEEE Transactions on Robotics and Automation, 1991, 7(4):500-514. doi: 10.1109/70.86080 [7] XU Y S, SHUM H Y.Adaptive control of space robot system with attitude controlled base[C]//Proceeding of the IEEE International Conference on Robotics and Automation.Piscataway, NJ: IEEE Press, 1992: 2005-2010. [8] PAPADOPOULOS E, DUBOWSKY S.Dynamic singularities in free-floating space manipulators[J].Journal of Dynamics System, Measurement, and Control, 1993, 115(1):44-52. doi: 10.1115/1.2897406 [9] ZHANG F H, FU Y L, WANG S G.An adaptive variable structure control of the robot satellite system with floating base in Cartesian space[J].Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2016, 230(18):3241-3252. doi: 10.1177/0954406215610789 [10] 张军, 胡海霞, 邢琰.空间机器人退步控制器设计[J].空间控制技术与应用, 2009, 35(1):7-12. http://d.old.wanfangdata.com.cn/Periodical/kjkzjsyyy200901002ZHANG J, HU H X, XING Y.Backstepping controller design for space robot[J].Aerospace Control and Application, 2009, 35(1):7-12(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/kjkzjsyyy200901002 [11] TITUS N A.Efficient base control for spacecraft-mounted manipulators: AIAA-2005-6242[R].Reston: AIAA, 2005. [12] UMETANI Y, YOSHIDA K.Resolved motion rate control of space manipulators with generalized Jacobian matrix[J].IEEE Transactions on Robotics and Automation, 1989, 5(3):303-314. doi: 10.1109/70.34766 [13] YIME E, SALTAREN R, GARCIA C, et al.Robot based on task-space dynamical model[J].IET Control Theory & Applications, 2011, 5(18):2111-2119. http://cn.bing.com/academic/profile?id=1d0b7eb1cb210122ddef7b6cc45d85b4&encoded=0&v=paper_preview&mkt=zh-cn [14] HALL C D, TSIOTRAS P, SHEN H.Tracking rigid body motion using thrusters and momentum wheels[J].Journal of the Astronautical Sciences, 2013, 50(3):311-323. http://cn.bing.com/academic/profile?id=d37aaea5ce914aa2b3509179f0db3762&encoded=0&v=paper_preview&mkt=zh-cn [15] BITTNER H, FISCHER H D, SURAUER M.Design of reaction jet attitude control systems for flexible spacecraft[C]//IFAC Automatical Control in Space, 1982: 373-400. https://www.sciencedirect.com/science/article/pii/S1474667017622225