A image reconstruction algorithm of transient sources based on combined sparsities of background and variation
-
摘要:
针对射电干涉测量通过结合长时间观测的多组可见度数据对静态源进行高空间分辨率成像,但无法得到时变信息的问题,提出了一种基于背景和目标变化的直和空间上稀疏性的稀疏基线综合孔径动态场景图像重建算法。将起始时刻的亮温和相邻时刻的亮温变化作为待求解矢量,不同时刻的亮温表示为它们的和,构造测量方程,并利用起始时刻亮温和相邻时刻亮温的稀疏性进行求解,重建出不同时刻的瞬变源图像。仿真实验结果表明,对于小区域背景下的瞬变源,所提算法与已有方法相当,对于大区域背景下的瞬变源,所提算法优于已有方法。
Abstract:Radio interferometers can achieve high spatial resolution imaging by combining multiple groups of visibility data measured over long periods of time. However, the variable information of temporally variable source is missing. A image reconstruction algorithm of varied sources by sparse baseline aperture synthesis based on sparse constraint on direct sum of background and inter-frame difference is proposed. The brightness temperature at initial moment and the brightness temperature difference of adjacent moments are taken as the vector of solution to seek, and the brightness temperatures at different moments are the sums of them, which leads to the measuring equation of the brightness temperature at initial moment and the difference. Transient source images at different moments are reconstructed by solving the sparsity of brightness temperature at initial moment and brightness temperature difference of adjacent moments. The results of numerical experiments show that the proposed method matches the best on transient source in a local background and outperforms the existing methods on varying source in a global background.
-
Key words:
- transient source /
- sparse recovery /
- radio astronomy /
- synthetic aperture imaging /
- interferometer
-
表 1 首帧图像和帧间差分图像的像素基系数、小波基系数的ℓ0范数
Table 1. ℓ0 norm of coefficients of the first frame and difference in pixel and wavelet domains
图像 像素基系数ℓ0范数 小波基系数ℓ0范数 首帧图像 1024 338 第2帧图像与首帧图像差分图像 30 208 -
[1] LORIMER D R, KARASTERGIOU A, MCLAUGHLIN M A, et al.On the detectability of extragalactic fast radio transients[J].Monthly Notices of the Royal Astronomical Society, 2013, 436(1):L5-L9. doi: 10.1093/mnrasl/slt098 [2] VAN HAARLEM M P, WISE M W, GUNST A W, et al.LOFAR:The low-frequency array[J].Astronomy & Astrophysics, 2013, 556:A2. http://d.old.wanfangdata.com.cn/Periodical/cblx200702018 [3] ZARKA P, GIRARD J, TAGGER M, et al.FAR: The LOFAR super station project in Nançay[C]//SF2A-2012: Proceedings of the Annual Meeting of the French Society of Astronomy and Astrophysics, 2012: 687-694. [4] THOMPSON A R, MORAN J M.Interferometry and synthesis in radio astronomy[M].Berlin:Springer, 2017. [5] JOHNSON M D, LOEB A, SHIOKAWA H, et al.Measuring the direction and angular velocity of a black hole accretion disk via lagged interferometric covariance[J].The Astrophysical Journal, 2015, 813(2):132. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=IOP_9219007 [6] LAW C J, BOWER G C, BURKE-SPOLAOR S, et al.Realfast:Real-time, commensal fast transient surveys with the very large array[J].The Astrophysical Journal(Supplement Series), 2018, 236(1):8. doi: 10.3847/1538-4365/aab77b [7] RAU U.Radio interferometric imaging of spatial structure that varies with time and frequency[C]//Image Reconstruction from Incomplete Data VII.Bellingham: SPIE, 2012: 1-12. [8] STEWART I M, FENECH D M, MUXLOW T W B.A multiple-beam CLEAN for imaging intra-day variable radio sources[J].Astronomy & Astrophysics, 2011, 535:A81. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1107.4282 [9] SWINBANK J D, STALEY T D, MOLENAAR G J, et al.The LOFAR transients pipeline[J].Astronomy and Computing, 2015, 11:25-48. doi: 10.1016/j.ascom.2015.03.002 [10] WENGER S, RAU U, MAGNOR M.A group sparsity imaging algorithm for transient radio sources[J].Astronomy and Computing, 2013, 1:40-45. doi: 10.1016/j.ascom.2013.02.002 [11] CANDèS E J, TAO T.Decoding by linear programming[J].IEEE Transactions on Information Theory, 2005, 51(12):4203-4215. doi: 10.1109/TIT.2005.858979 [12] CANDōS E J.Compressive sampling[C]//Proceedings of the International Congress of Mathematicians Madrid, 2006: 1433-1452. [13] DONOHO D L.Compressed sensing[J].IEEE Transactions on Information Theory, 2006, 52(4):1289-1306. doi: 10.1109/TIT.2006.871582 [14] WRIGHT S J, NOWAK R D, FIGUEIREDO M A.Sparse reconstruction by separable approximation[J].IEEE Transactions on Signal Processing, 2009, 57(7):2479-2493. doi: 10.1109/TSP.2009.2016892 [15] LUSTIG M, DONOHO D L, SANTOS J M, et al.Compressed sensing MRI[J].IEEE Signal Processing Magazine, 2008, 25(2):72-82. doi: 10.1109/MSP.2007.914728 [16] CHATTERJEE S, LAW C J, WHARTON R S, et al.A direct localization of a fast radio burst and its host[J].Nature, 2017, 541(7635):58-61. doi: 10.1038/nature20797