留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于背景和变化稀疏性的瞬变源图像重建算法

杨宜 邓丽 段然 杨震

杨宜, 邓丽, 段然, 等 . 基于背景和变化稀疏性的瞬变源图像重建算法[J]. 北京航空航天大学学报, 2020, 46(5): 915-924. doi: 10.13700/j.bh.1001-5965.2019.0222
引用本文: 杨宜, 邓丽, 段然, 等 . 基于背景和变化稀疏性的瞬变源图像重建算法[J]. 北京航空航天大学学报, 2020, 46(5): 915-924. doi: 10.13700/j.bh.1001-5965.2019.0222
YANG Yi, DENG Li, DUAN Ran, et al. A image reconstruction algorithm of transient sources based on combined sparsities of background and variation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(5): 915-924. doi: 10.13700/j.bh.1001-5965.2019.0222(in Chinese)
Citation: YANG Yi, DENG Li, DUAN Ran, et al. A image reconstruction algorithm of transient sources based on combined sparsities of background and variation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(5): 915-924. doi: 10.13700/j.bh.1001-5965.2019.0222(in Chinese)

基于背景和变化稀疏性的瞬变源图像重建算法

doi: 10.13700/j.bh.1001-5965.2019.0222
基金项目: 

中国科学院前沿科学重点研究计划 QYZDY-SSW-JSC014

详细信息
    作者简介:

    杨宜 男, 博士研究生。主要研究方向:图像重建、目标检测与识别

    邓丽 女, 博士, 硕士生导师。主要研究方向:分布式干涉测量

    通讯作者:

    邓丽, E-mail: dengli@nssc.ac.cn

  • 中图分类号: V19

A image reconstruction algorithm of transient sources based on combined sparsities of background and variation

Funds: 

Key Research Program of Frontier Sciences, CAS QYZDY-SSW-JSC014

More Information
  • 摘要:

    针对射电干涉测量通过结合长时间观测的多组可见度数据对静态源进行高空间分辨率成像,但无法得到时变信息的问题,提出了一种基于背景和目标变化的直和空间上稀疏性的稀疏基线综合孔径动态场景图像重建算法。将起始时刻的亮温和相邻时刻的亮温变化作为待求解矢量,不同时刻的亮温表示为它们的和,构造测量方程,并利用起始时刻亮温和相邻时刻亮温的稀疏性进行求解,重建出不同时刻的瞬变源图像。仿真实验结果表明,对于小区域背景下的瞬变源,所提算法与已有方法相当,对于大区域背景下的瞬变源,所提算法优于已有方法。

     

  • 图 1  二元干涉仪原理图

    Figure 1.  Principle diagram of binary interferometer

    图 2  首帧图像和帧间差分图像的像素基系数、小波基系数的分布

    Figure 2.  Distribution of coefficients of the first frame and difference in pixel and wavelet domainss

    图 3  不同方法对小区域背景下瞬变源的重建结果

    Figure 3.  Reconstruction results of a transient source on a small region of background by different methods

    图 4  小区域背景下,迭代次数增加时不同方法对瞬变源重建结果相对均方根误差的变化

    Figure 4.  RMSE of reconstruction results of transient source on a small region of background by different methods as number of iteration increasing

    图 5  小区域背景下,迭代次数增加时不同方法对运动且强度变化的瞬变源重建结果相对均方根误差的变化

    Figure 5.  RMSE of reconstruction results of transient source which is moving and varying in intensity on a small region of background by different methods as number of iteration increasing

    图 6  不同方法对暗背景下瞬变源的重建结果

    Figure 6.  Reconstruction results of transient source with dark background by different methods

    图 7  暗背景下,每帧可见度函数采样数增加时不同方法对瞬变源重建结果相对均方根误差的变化

    Figure 7.  RMSE of reconstruction results of transient source with dark background by different methods as number of sampling of visibility increasing

    图 8  不同方法对大区域背景下瞬变源的重建结果

    Figure 8.  Reconstruction results of transient source on a big region of background by different methods

    图 9  大区域背景下,每帧可见度函数采样数增加时不同方法对瞬变源重建结果相对均方根误差的变化

    Figure 9.  RMSE of reconstruction results of transient source on a big region of background by different methods as number of sampling of visibility increasing

    图 10  大区域背景下,强度变化率增加时diff-1算法对瞬变源重建结果相对均方根误差的变化

    Figure 10.  RMSE of reconstruction results of transient source on a big region of background by diff-1 algorithm as intensity varying rate increasing

    图 11  大区域背景下,信噪比增加时diff-1算法对瞬变源重建结果相对均方根误差的变化

    Figure 11.  RMSE of reconstruction results of transient source on a big region of background by diff-1 algorithm as SNR increasing

    图 12  不同方法对VLA的FRB测量数据的重建结果

    Figure 12.  Reconstruction results of measurement data of FRB on VLA by different methods

    表  1  首帧图像和帧间差分图像的像素基系数、小波基系数的0范数

    Table  1.   0 norm of coefficients of the first frame and difference in pixel and wavelet domains

    图像 像素基系数0范数 小波基系数0范数
    首帧图像 1024 338
    第2帧图像与首帧图像差分图像 30 208
    下载: 导出CSV
  • [1] LORIMER D R, KARASTERGIOU A, MCLAUGHLIN M A, et al.On the detectability of extragalactic fast radio transients[J].Monthly Notices of the Royal Astronomical Society, 2013, 436(1):L5-L9. doi: 10.1093/mnrasl/slt098
    [2] VAN HAARLEM M P, WISE M W, GUNST A W, et al.LOFAR:The low-frequency array[J].Astronomy & Astrophysics, 2013, 556:A2. http://d.old.wanfangdata.com.cn/Periodical/cblx200702018
    [3] ZARKA P, GIRARD J, TAGGER M, et al.FAR: The LOFAR super station project in Nançay[C]//SF2A-2012: Proceedings of the Annual Meeting of the French Society of Astronomy and Astrophysics, 2012: 687-694.
    [4] THOMPSON A R, MORAN J M.Interferometry and synthesis in radio astronomy[M].Berlin:Springer, 2017.
    [5] JOHNSON M D, LOEB A, SHIOKAWA H, et al.Measuring the direction and angular velocity of a black hole accretion disk via lagged interferometric covariance[J].The Astrophysical Journal, 2015, 813(2):132. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=IOP_9219007
    [6] LAW C J, BOWER G C, BURKE-SPOLAOR S, et al.Realfast:Real-time, commensal fast transient surveys with the very large array[J].The Astrophysical Journal(Supplement Series), 2018, 236(1):8. doi: 10.3847/1538-4365/aab77b
    [7] RAU U.Radio interferometric imaging of spatial structure that varies with time and frequency[C]//Image Reconstruction from Incomplete Data VII.Bellingham: SPIE, 2012: 1-12.
    [8] STEWART I M, FENECH D M, MUXLOW T W B.A multiple-beam CLEAN for imaging intra-day variable radio sources[J].Astronomy & Astrophysics, 2011, 535:A81. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1107.4282
    [9] SWINBANK J D, STALEY T D, MOLENAAR G J, et al.The LOFAR transients pipeline[J].Astronomy and Computing, 2015, 11:25-48. doi: 10.1016/j.ascom.2015.03.002
    [10] WENGER S, RAU U, MAGNOR M.A group sparsity imaging algorithm for transient radio sources[J].Astronomy and Computing, 2013, 1:40-45. doi: 10.1016/j.ascom.2013.02.002
    [11] CANDèS E J, TAO T.Decoding by linear programming[J].IEEE Transactions on Information Theory, 2005, 51(12):4203-4215. doi: 10.1109/TIT.2005.858979
    [12] CANDōS E J.Compressive sampling[C]//Proceedings of the International Congress of Mathematicians Madrid, 2006: 1433-1452.
    [13] DONOHO D L.Compressed sensing[J].IEEE Transactions on Information Theory, 2006, 52(4):1289-1306. doi: 10.1109/TIT.2006.871582
    [14] WRIGHT S J, NOWAK R D, FIGUEIREDO M A.Sparse reconstruction by separable approximation[J].IEEE Transactions on Signal Processing, 2009, 57(7):2479-2493. doi: 10.1109/TSP.2009.2016892
    [15] LUSTIG M, DONOHO D L, SANTOS J M, et al.Compressed sensing MRI[J].IEEE Signal Processing Magazine, 2008, 25(2):72-82. doi: 10.1109/MSP.2007.914728
    [16] CHATTERJEE S, LAW C J, WHARTON R S, et al.A direct localization of a fast radio burst and its host[J].Nature, 2017, 541(7635):58-61. doi: 10.1038/nature20797
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  516
  • HTML全文浏览量:  74
  • PDF下载量:  329
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-12
  • 录用日期:  2019-12-06
  • 网络出版日期:  2020-05-20

目录

    /

    返回文章
    返回
    常见问答