留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向低视角场面监视的移动目标速度测量

张天慈 丁萌 钱小燕 左洪福

张攀峰, 王晋军. 合成射流控制NACA0015翼型大攻角流动分离[J]. 北京航空航天大学学报, 2008, 34(04): 443-446.
引用本文: 张天慈, 丁萌, 钱小燕, 等 . 面向低视角场面监视的移动目标速度测量[J]. 北京航空航天大学学报, 2020, 46(2): 266-273. doi: 10.13700/j.bh.1001-5965.2019.0234
Zhang Panfeng, Wang Jinjun. Numerical simulation on flow control of stalled NACA0015 airfoil with synthetic jet actuator in recirculation region[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(04): 443-446. (in Chinese)
Citation: ZHANG Tianci, DING Meng, QIAN Xiaoyan, et al. Moving object speed measurement for low-camera-angle surface surveillance[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(2): 266-273. doi: 10.13700/j.bh.1001-5965.2019.0234(in Chinese)

面向低视角场面监视的移动目标速度测量

doi: 10.13700/j.bh.1001-5965.2019.0234
基金项目: 

国家自然科学基金委员会-中国民用航空局民航联合研究基金 U1633105

国家自然科学基金 61803199

航空科学基金 20170752008

江苏省高等学校自然科学研究面上项目 19KJB580013

详细信息
    作者简介:

    张天慈  男,博士,讲师。主要研究方向:智能交通与新航行系统。E-mail:tczhang@njfu.edu.cn

    丁萌  男,博士,副教授,硕士生导师。主要研究方向:机场场面监控,无人机导航、制导与控制,民用飞机航电系统适航技术

    钱小燕  女,博士,副教授,硕士生导师。主要研究方向:智能交通、机场场面监视技术、图像处理与分析

    通讯作者:

    张天慈. E-mail:tczhang@njfu.edu.cn

  • 中图分类号: V351.11

Moving object speed measurement for low-camera-angle surface surveillance

Funds: 

Joint Research Funds of National Natural Science Foundation of China and Civil Aviation Administration of China U1633105

National Natural Science Foundation of China 61803199

Aeronautical Science Foundation of China 20170752008

Natural Science Foundation of Jiangsu Higher Education Institutions of China 19KJB580013

More Information
  • 摘要:

    为构建有效的机场场面视觉监视系统,提出了一种基于特征点持续跟踪与分析的移动目标速度测量方法。首先,利用场面几何特征对摄像机进行标定;然后,基于光流场对图像运动区域的特征点进行持续跟踪,在此基础上通过特征点轨迹聚类区分不同移动目标;最后,根据特征点高度与运动距离完成速度测量。所提方法能够利用机场场面摄像机获取的低视角单目视频图像,对移动目标的运动速度进行准确测量。基于广州白云国际机场的场面运行视频进行了仿真分析,验证了所提方法在低视角速度测量方面的可行性与优势。

     

  • 图 1  系统方案框图

    Figure 1.  Block diagram of system scheme

    图 2  空间坐标系与图像坐标系位置关系示意图

    Figure 2.  Illustration of position relation between spatial coordinate system and image coordinate system

    图 3  用于摄像机标定的场面特征

    Figure 3.  Surface features used for camera calibration

    图 4  摄像机标定结果图示

    Figure 4.  Illustration of camera calibration results

    图 5  特征点轨迹聚类

    Figure 5.  Feature point trajectory clustering

    图 6  机场平面轨迹投影

    Figure 6.  Trajectory projection on airport surface

    图 7  移动目标速度测量结果

    Figure 7.  Moving object speed measurement results

    图 8  速度测量误差对比

    Figure 8.  Comparison of speed measurement errors

    表  1  场面运行视频数据集

    Table  1.   Dataset of surface operation videos

    视频名称 分辨率 帧数 航空器个数 车辆个数
    cam2513-视频1 1024×576 401 1 0
    cam2513-视频2 1024×576 101 1 0
    cam2513-视频3 1024×576 574 1 4
    cam9915-视频1 1024×576 801 1 1
    cam9915-视频2 1024×576 451 0 2
    cam9915-视频3 1024×576 551 2 1
    下载: 导出CSV

    表  2  摄像机标定结果

    Table  2.   Camera calibration results

    摄像机 消失点坐标 焦距 高度/m
    cam2513 (7037.1, 20.3), (-117.2, 126.1), (862.8, 24017.6) 2 015.5 8.1
    cam9915 (-5026.3, -138.6), (722.7, 213.3), (-281.1, 13243.3) 1065.4 8.9
    下载: 导出CSV

    表  3  移动目标速度测量误差均值与方差

    Table  3.   Mean and variance of speed measurement errors for moving objects

    视频名称 移动目标 特征点 边界框
    均值/ (m· s-1) 方差/ (m· s-1)2 均值/ (m· s-1)方差/ (m· s-1)2
    cam2513-视频1 航空器 -1.1 0.3 13.8 600.4
    cam2513-视频2 航空器 0 0 2.4 8.7
    航空器 -0.1 0.2 2.6 120.2
    cam2513-视频3 车辆1 1.2 2.4 2.0 25.3
    车辆2 -0.8 0.1 -0.3 2.9
    车辆3 -1.9 0.3 -2.3 5.2
    cam9915-视频1 航空器 -0.9 0.9 8.3 66.0
    车辆 -0.6 0 0.6 2.4
    cam9915-视频2 车辆1 0.2 0.1 0.4 4.3
    车辆2 0.6 0.1 0.4 1.3
    cam9915-视频3 航空器1 -0.1 0.2 0.6 2.9
    航空器2 -0.5 0.2 3.7 30.9
    车辆 -0.5 0.1 0.9 1.8
    下载: 导出CSV
  • [1] CERMENO E, PEREZ A, SIGUENZA J A.Intelligent video surveillance beyond robust background modeling[J].Expert Systems with Applications, 2018, 91:138-149.
    [2] 罗晓, 卢宇, 吴宏刚.采用多视频融合的机场场面监视方法[J].电讯技术, 2011, 51(7):128-132.

    LUO X, LU Y, WU H G.A novel airport surface surveillance method using multi-video fusion[J].Telecommunication Engineering, 2011, 51(7):128-132(in Chinese).
    [3] VIDAKIS D G, KOSMOPOULOS D I.Facilitation of air traffic control via optical character recognition-based aircraft registration number extraction[J].IET Intelligent Transport Systems, 2018, 12(8):965-975.
    [4] LOPEZ-ARAQUISTAIN J, JARAMA A J, BESADA J A, et al.A new approach to map-assisted bayesian tracking filtering[J].Information Fusion, 2019, 45:79-95.
    [5] 唐勇, 胡明华, 吴洪刚, 等.一种在机场视频中实现飞机自动挂标牌的新方法[J].江苏大学学报(自然科学版), 2013, 34(6):681-686.

    TANG Y, HU M H, WU H G, et al.An automatical labeling aircraft method for airport video monitoring[J].Journal of Jiangsu University(Natural Science Edition), 2013, 34(6):681-686(in Chinese).
    [6] SAIVADDI V, LU H L.Computer vision based surveillance concept for airport ramp operations[C]//Proceedings of 2013 IEEE/AIAA 32nd Digital Avionics Systems Conference(DASC).Piscataway, NJ: IEEE Press, 2013: 1-35.
    [7] LU H L, CHENG V H, TSAI J, et al.Airport gate operation monitoring using computer vision techniques[C]//Proceedings of 16th AIAA Aviation Technology, Integration, and Operations Conference.Reston: AIAA, 2016: 1-12.
    [8] DONADIO F, FREJAVILLE J, LARNIER S, et al.Artificial intelligence and collaborative robot to improve airport operations[C]//14th International Conference on Remote Engineering and Virtual Instrumentation(REV).Berlin: Springer, 2018: 973-986.
    [9] LU H L, KWAN J, FONG A, et al.Field testing of vision-based surveillance system for ramp area operations[C]//Proceedings of 2018 Aviation Technology, Integration, and Operations Conference.Reston: AIAA, 2018: 1-11.
    [10] CHEN J, WEISZER M, STEWART P, et al.Toward a more realistic, cost effective and greener ground movement through active routing:Part 1-Optimal speed profile generation[J].IEEE Transactions on Intelligent Transportation Systems, 2016, 17(5):1196-1209.
    [11] KANHERE N K, BIRCHFIELD S T.Real-time incremental segmentation and tracking of vehicles at low camera angles using stable features[J].IEEE Transactions on Intelligent Transportation Systems, 2008, 9(1):148-160.
    [12] 詹昭焕, 韩松臣, 李炜, 等.基于倾向流和深度学习的机场运动目标检测[J].交通信息与安全, 2019, 37(1):49-57.

    ZHAN Z H, HAN S C, LI W, et al.A target detection method of moving objects at airport based on streak flow and deep learning[J].Journal of Transport Information and Safety, 2019, 37(1):49-57(in Chinese).
    [13] BARNICH O, VAN DROOGENBROECK M.ViBe:A universal background subtraction algorithm for video sequences[J].IEEE Transactions on Image Processing, 2011, 20(6):1709-1724.
    [14] ROSTEN E, PORTER R, DRUMMOND T.Faster and better:A machine learning approach to corner detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(1):105-119.
    [15] ILG E, MAYER N, SAIKIA T, et al.FlowNet 2.0: Evolution of optical flow estimation with deep networks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Piscataway, NJ: IEEE Press, 2017: 1647-1655.
    [16] OCHS P, MALIK J, BROX T.Segmentation of moving objects by long term video analysis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(6):1187-1200.
    [17] TOLDO R, FUSIELLO A.Robust multiple structures estimation with J-linkage[C]//Proceedings of European Conference on Computer Vision.Berlin: Springer, 2008: 537-547.
    [18] REDMON J, DIVVALA S, GIRSHICK R, et al.You only look once: Unified, real-time object detection[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Piscataway, NJ: IEEE Press, 2016: 779-788.
    [19] DANELLJAN M, BHAT G, KHAN F S, et al.ECO: Efficient convolution operators for tracking[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Piscataway, NJ: IEEE Press, 2017: 6638-6646.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  836
  • HTML全文浏览量:  215
  • PDF下载量:  148
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-18
  • 录用日期:  2019-07-05
  • 网络出版日期:  2020-02-20

目录

    /

    返回文章
    返回
    常见问答