留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

航空发动机传感器与执行机构信息重构算法

孙浩 郭迎清 赵万里

孙浩, 郭迎清, 赵万里等 . 航空发动机传感器与执行机构信息重构算法[J]. 北京航空航天大学学报, 2020, 46(2): 331-339. doi: 10.13700/j.bh.1001-5965.2019.0240
引用本文: 孙浩, 郭迎清, 赵万里等 . 航空发动机传感器与执行机构信息重构算法[J]. 北京航空航天大学学报, 2020, 46(2): 331-339. doi: 10.13700/j.bh.1001-5965.2019.0240
SUN Hao, GUO Yingqing, ZHAO Wanliet al. Information reconstruction algorithm of aero-engine sensors and actuators[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(2): 331-339. doi: 10.13700/j.bh.1001-5965.2019.0240(in Chinese)
Citation: SUN Hao, GUO Yingqing, ZHAO Wanliet al. Information reconstruction algorithm of aero-engine sensors and actuators[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(2): 331-339. doi: 10.13700/j.bh.1001-5965.2019.0240(in Chinese)

航空发动机传感器与执行机构信息重构算法

doi: 10.13700/j.bh.1001-5965.2019.0240
详细信息
    作者简介:

    孙浩   男, 博士研究生。主要研究方向:航空发动机故障诊断与容错控制

    郭迎清  男, 博士, 教授, 博士生导师。主要研究方向:航空发动机先进控制与健康管理技术

    通讯作者:

    郭迎清. E-mail: yqguo@nwpu.edu.cn

  • 中图分类号: V233.7

Information reconstruction algorithm of aero-engine sensors and actuators

More Information
  • 摘要:

    为实现航空发动机传感器与执行结构在故障情形下的故障幅值估计及信息重构,缓解故障对发动机性能的影响,在已有故障检测和故障隔离算法的基础上,提出一种基于修正的广义似然比(GLR)方法的信息重构算法。针对某型民用涡扇发动机的传感器与执行机构发生恒偏差与漂移故障的情形下进行了仿真验证。结果表明:基于修正的GLR方法对传感器和执行机构恒偏差和漂移故障的故障幅值估计具有较高的精度,两种故障情形下故障幅值的估计值的均方根误差均不超过0.005,故障部件信息重构后故障对系统性能的影响得到有效缓解。

     

  • 图 1  航空发动机传感器和执行机构信息重构系统结构

    Figure 1.  Information reconstruction system structure of aero-engine sensors and actuators

    图 2  恒偏差故障下的故障幅值估计

    Figure 2.  Fault magnitude estimation under constant deviation fault

    图 3  漂移故障下的故障幅值估计

    Figure 3.  Fault magnitude estimation under drift fault

    图 4  Nl传感器漂移故障下,故障信息重构前后,主燃油流量和7个可测参数变化趋势

    Figure 4.  Variation of main fuel flow and seven measurable parameters before and after fault information reconstruction under Nl sensor drift fault

    图 5  Nl传感器漂移故障下,故障信息重构前后,4个不可测参数变化趋势

    Figure 5.  Variation of four unmeasurable parameters before and after fault information reconstruction under Nl sensor drift fault

    图 6  VBV执行机构漂移故障下,故障信息重构前后,主燃油流量和7个可测参数变化趋势

    Figure 6.  Variation of main fuel flow and seven measurable parameters before and after fault information reconstruction under VBV actuator drift fault

    图 7  VBV执行机构漂移故障下,故障信息重构前后,4个不可测参数变化趋势

    Figure 7.  Variation of four unmeasurable parameters before and after fault information reconstruction under VBV actuator drift fault

    表  1  恒偏差故障下的故障幅值估计RSME计算结果

    Table  1.   Calculation results of RSME of constant deviation fault magnitude estimation

    传感器参数 RSME 执行机构参数 RSME
    Nl 0.001 3 Wfm 0.003 8
    Nh 0.001 5 VBV 0.004 7
    P25 0.002 1 VSV 0.003 6
    Ps3 0.001 6
    T25 0.002 3
    T3 0.001 7
    T45 0.002 4
    下载: 导出CSV

    表  2  漂移故障下的故障幅值估计RSME计算结果

    Table  2.   Calculation results of RSME of drift fault magnitude estimation

    传感器参数 RSME 执行机构参数 RSME
    Nl 0.001 4 Wfm 0.004 2
    Nh 0.001 8 VBV 0.004 8
    P25 0.002 8 VSV 0.004 3
    Ps3 0.002 1
    T25 0.002 5
    T3 0.002 1
    T45 0.002 7
    下载: 导出CSV
  • [1] KUMAR A, VIASSOLO D E.Model-based fault tolerant control: NASA/CR 2008-215273[R].Washington, D.C.: NASA, 2008.
    [2] CHEN R H, SPEYER J L.Sensor and actuator fault reconstruction[J].Journal of Guidance, Control, and Dynamics, 2004, 27(2):186-196. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ024401232/
    [3] AZAM M, GHOSHAL S, BELL J, et al.Prognostics and health management(PHM)of electromechanical actuation(EMA)systems for next-generation aircraft: AIAA-2013-5138[R].Reston: AIAA, 2013. https://www.researchgate.net/publication/268469132_Prognostics_and_Health_Management_PHM_of_Electromechanical_Actuation_EMA_Systems_for_Next-Generation_Aircraft
    [4] ZEDDA M, SINGH R.Gas turbine engine and sensor fault diagnosis using optimization techniques[J].Journal of Propulsion & Power, 2002, 18(5):1019-1025. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0213357416/
    [5] 贺小栋, 郭迎清, 杜宪.一种基于模型的涡扇发动机容错控制策略[J].航空动力学报, 2016, 31(3):708-716. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201603023

    HE X D, GUO Y Q, DU X.A model-based fault tolerant control strategy for turbofan engine[J].Journal of Aerospace Power, 2016, 31(3):708-716(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201603023
    [6] 周东华, 叶银忠.现代故障诊断与容错控制[M].北京:清华大学出版社, 2000:11-14.

    ZHOU D H, YE Y Z.Modern fault diagnosis and fault tolerance control[M].Beijing:Tsinghua University Press, 2000:11-14(in Chinese).
    [7] 阎成鸿.航空发动机容错控制系统设计[J].微计算机信息, 2007, 23(19):63-64. doi: 10.3969/j.issn.1008-0570.2007.19.026

    YAN C H.The fault tolerant control system of aero-engine[J].Microcomputer Information, 2007, 23(19):63-64(in Chinese). doi: 10.3969/j.issn.1008-0570.2007.19.026
    [8] KOBAYASHI T, SIMON D L.Hybrid Kalman filter: A new approach for aircraft engine in-flight diagnostics: NASA/TM 2006-214491[R].Washington, D.C.: NASA, 2006.
    [9] 张书刚, 郭迎清, 陈小磊.航空发动机故障诊断系统性能评价与仿真验证[J].推进技术, 2013, 34(8):1121-1127. http://d.old.wanfangdata.com.cn/Periodical/tjjs201308018

    ZHANG S G, GUO Y Q, CHEN X L.Performance evaluation and simulation validation of fault diagnosis system for aircraft engine[J].Journal of Propulsion Technology, 2013, 34(8):1121-1127(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/tjjs201308018
    [10] 叶志锋, 孙健国.应用神经网络诊断航空发动机气路故障的前景[J].推进技术, 2002, 23(1):1-4. doi: 10.3321/j.issn:1001-4055.2002.01.001

    YE Z F, SUN J G.Prospect for neural networks used aeroengine fault diagnosis technology[J].Journal of Propulsion Technology, 2002, 23(1):1-4(in Chinese). doi: 10.3321/j.issn:1001-4055.2002.01.001
    [11] 崔文斌, 叶志锋, 彭利方.基于信息融合遗传算法的航空发动机气路故障诊断[J].航空动力学报, 2015, 30(5):1275-1280. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201505032

    CUI W B, YE Z F, PENG L F.Aero-engine gas path fault diagnosis based on genetic algorithm of information fusion[J].Journal of Aerospace Power, 2015, 30(5):1275-1280(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201505032
    [12] CSANK J T, SIMON D L.Sensor data qualification technique applied to gas turbine engines: NASA/TM 2013-216609[R].Washington, D.C.: NASA, 2013. https://ntrs.nasa.gov/search.jsp?R=20140011476
    [13] POURBABAEE B, MESKIN N, KHORASANI K.Sensor fault detection, isolation, and identification using multiple-model-based hybrid kalman filter for gas turbine engines[J].IEEE Transactions on Control Systems Technology, 2016, 24(4):1184-1200. doi: 10.1109/TCST.2015.2480003
    [14] KOBAYASHI T.Aircraft engine sensor/actuator/component fault diagnosis using a bank of Kalman filters: NASA/CR 2003-212298[R].Washington, D.C.: NASA, 2003.
    [15] 袁春飞, 姚华.传感器故障下的航空发动机机载自适应模型重构[J].航空动力学报, 2006, 21(1):195-200. doi: 10.3969/j.issn.1000-8055.2006.01.035

    YUAN C F, YAO H.Aero-engine adaptive model re-construction under sensor failure[J].Journal of Aerospace Power, 2006, 21(1):195-200(in Chinese). doi: 10.3969/j.issn.1000-8055.2006.01.035
    [16] 张高钱.航空发动机传感器故障诊断与容错控制[D].南京: 南京航空航天大学, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10287-1014060682.htm

    ZHANG G Q.Research on aero-engine sensor fault diagnosis and fault tolerant control[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2014(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10287-1014060682.htm
    [17] 周东华, 孙优贤.控制系统的故障检测与诊断技术[M].北京:清华大学出版社, 1994:19-20.

    ZHOU D H, SUN Y X.Control system fault detection and diagnosis technology[M].Beijing:Tsinghua University Press, 1994:19-20(in Chinese).
    [18] 张书刚, 郭迎清, 陆军.基于GasTurb/MATLAB的航空发动机部件级模型研究[J].航空动力学报, 2012, 27(12):2850-2856. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkdlxb201212032

    ZHANG S G, GUO Y Q, LU J.Research on aircraft engine component-level models based on GasTurb/MATLAB[J].Journal of Aerospace Power, 2012, 27(12):2850-2856(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkdlxb201212032
    [19] SOWERS S T.Systematic sensor selection strategy(S4)user guide: NASA/CR 2012-215242[R].Washington, D.C.: NASA, 2012. https://ntrs.nasa.gov/search.jsp?R=20120003357
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  687
  • HTML全文浏览量:  37
  • PDF下载量:  142
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-18
  • 录用日期:  2019-07-05
  • 网络出版日期:  2020-02-20

目录

    /

    返回文章
    返回
    常见问答