-
摘要:
针对燃料电池无人机(UAV)动力系统飞行测试困难的问题,为了提升动力系统设计与开发水平,以燃料电池、锂电池、DC/DC功率转换器、电子调速器和直流无刷电机组成的动力系统作为实物介入,无人机动力学、自动驾驶仪、螺旋桨、飞行环境等数学模型为软件部分,无人机的油门信号控制及飞行过程中电机的载荷等为模拟仿真部分,以信号发生器、测功机及扭矩加载装置为软硬件接口,设计并搭建了燃料电池无人机动力系统半实物(HIL)仿真平台。面向典型任务剖面,基于状态机管理策略,对燃料电池/锂电池电动无人机的动力系统进行了半实物仿真研究,分析了半实物仿真平台和管理策略的有效性和实用性。
-
关键词:
- 燃料电池 /
- 无人机(UAV) /
- 动力系统 /
- 半实物(HIL)仿真 /
- 能源管理
Abstract:Focusing on the flight test difficulty of fuel cell unmanned aerial vehicle (UAV) power system and aimed at improving the design and development level of power system, this paper designs and builds a hardware-in-the-loop (HIL) simulation platform of fuel cell UAV power system, on which the power system composed of fuel cell, lithium cell, DC/DC power converter, electronic governor and brushless motor is taken as the hardware, the mathematical models of UAV, autopilot, propeller and flight environment are taken as the software part, the throttle signal control of UAV and the load of motor in flight are taken as the simulation part, and the signal generator, dynamometer and torque loading device are taken as software and hardware interfaces. Facing the typical mission profiles and based on the state machine management strategy, the paper conducts a HIL simulation for power system of fuel cell/battery electric UAV, and analyzes the effectiveness and practicability of the HIL simulation platform and management strategy.
-
表 1 燃料电池基本参数
Table 1. Basic parameters of fuel cell
参数 数值 额定功率/W 600 额定电压/V 24 额定电流/A 25 电压范围/V 20~40 氢气纯度/% ≥99.95 氢气工作压力/MPa 0.05~0.06 氢气消耗量(额定)/(L·min-1) 7 环境温度/℃ -5~40 环境湿度/% 10~95 -
[1] 刘莉, 杜孟尧, 张晓辉, 等.太阳能/氢能无人机总体设计与能源管理策略研究[J].航空学报, 2016, 37(1):144-162. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkxb201601013LIU L, DU M Y, ZHANG X H, et al.Conceputual design and energy management stragement strategy for UAV with hybrid solar and hydrogen energy[J].Acta Aeronautica et Astronautica Sinica, 2016, 37(1):144-162(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkxb201601013 [2] 王刚, 胡峪, 宋笔锋, 等.电动无人机动力系统优化设计及航时评估[J].航空动力学报, 2015, 30(8):1834-1840. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkdlxb201508006WANG G, HU Y, SONG B F, et al.Optimal design and endurance estimation of propulsion system for electric-powered unmanned aerial vechicle[J].Journal of Aerospace Power, 2015, 30(8):1834-1840(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkdlxb201508006 [3] 周苏, 高昆鹏, 支雪磊.一种改进的质子交换膜燃料电池系统动态模型[J].同济大学学报(自然科学版), 2015, 43(6):882-887. http://d.old.wanfangdata.com.cn/Periodical/tjdxxb201506012ZHOU S, GAO K P, ZHI X L.An improved dynamic model for proton exchange membrane fuel cell system[J].Journal of Tongji University(Natural Science), 2015, 43(6):882-887(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/tjdxxb201506012 [4] 徐林.基于Simulink的一体化实时半实物仿真平台的研究与实现[D].长沙: 国防科学技术大学, 2008.XU L.Reasearch and implementation of integrative real-time & hardware-in-the-loop simulation platform based on Simulink[D].Changsha: National University of Defense Technology, 2008(in Chinese). [5] 宋静婧, 祝明, 武哲, 等."人在回路"无人飞艇半实物仿真系统设计与实现[J].北京航空航天大学学报, 2011, 37(5):595-599. https://bhxb.buaa.edu.cn/CN/Y2011/V37/I5/595SONG J J, ZHU M, WU Z, et al.Design and implementation of man-in-the-loop unmanned airship HIL simulation system[J].Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(5):595-599(in Chinese). https://bhxb.buaa.edu.cn/CN/Y2011/V37/I5/595 [6] 常城.汽车电子半实物仿真平台的研究[D].大连: 大连理工大学, 2008.CHANG C.Research on the automotive electronics HIL simulation platform[D].Dalian: Dalian University of Technology, 2008(in Chinese). [7] TIGNER B, MEYER M, HOLDEN M, et al.Test techniques for small-scale research aircraft: AIAA-1998-2726[R].Reston: AIAA, 1998. [8] BRADLREY T, MOFFITT B, PAREKH D, et al.Flight test results for a fuel cell unmanned aerial vehicle: AIAA-2007-32[R].Reston: AIAA, 2007. [9] VURAL B, BOYNUEGRI A R, NAKIR I, et al.Fuel cell and ultra-capacitor hybridization:A prototype test bench based analysis of different energy management strategies for vehicular applications[J].International Journal of Hydrogen Energy, 2010, 35(20):11161-11171. doi: 10.1016/j.ijhydene.2010.07.063 [10] GREENWELL W, VAHIDI A.Predictive control of voltage and current in a fuel cell-ultracapacitor hybrid[J].IEEE Transactions on Industrial Electronics, 2010, 57(6):1954-1963. doi: 10.1109/TIE.2009.2031663 [11] VERSTRAETE D, LEHMKUEHLER K, GONG A, et al.Characterisation of a hybrid, fuel-cell-based propulsion system for small unmanned aircraft[J].Journal of Power Sources, 2014, 250:204-211. doi: 10.1016/j.jpowsour.2013.11.017 [12] VERSTRAETE D, GONG A, LU D D C, et al.Experimental investigation of the role of the battery in the aerostack hybrid, fuel-cell-based propulsion system for small unmanned aircraft systems[J].International Journal of Hydrogen Energy, 2015, 40(3):1598-1606. doi: 10.1016/j.ijhydene.2014.11.043 [13] ZHANG X H, LIU L, DAI Y L, et al.Experimental investigation on the online fuzzy energy management of hybrid fuel cell/battery power system for UAVs[J].International Journal of Hydrogen Energy, 2018, 43(21):10094-10103. doi: 10.1016/j.ijhydene.2018.04.075 [14] 张晓辉, 刘莉, 戴月领, 等.燃料电池无人机动力系统方案设计与试验[J].航空学报, 2018, 39(8):221874. http://d.old.wanfangdata.com.cn/Periodical/hkxb201808013ZHANG X H, LIU L, DAI Y L, et al.Design and test of propulsion system for fuel cell powered UAVs[J].Acta Aeronautica et Astronautica Sinica, 2018, 39(8):221874(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb201808013 [15] MOFFITT B, BRADLREY T, MAVRIS D, et al.Reducing uncertainty of a fuel cell UAV through variable fidelity optimization: AIAA-2007-7793[R].Reston: AIAA, 2007. [16] HUNG J Y C.Investigation of methods for increasing the energy efficiency on unmanned aerial vehicles(UAVs)[D].Brisbane: Queensland University of Technology, 2011. http://core.ac.uk/display/10907444