留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

3-PPP型柔性并联微定位平台的设计与分析

王保兴 孟刚 林苗 李巍 曹毅

王保兴, 孟刚, 林苗, 等 . 3-PPP型柔性并联微定位平台的设计与分析[J]. 北京航空航天大学学报, 2020, 46(4): 798-807. doi: 10.13700/j.bh.1001-5965.2019.0286
引用本文: 王保兴, 孟刚, 林苗, 等 . 3-PPP型柔性并联微定位平台的设计与分析[J]. 北京航空航天大学学报, 2020, 46(4): 798-807. doi: 10.13700/j.bh.1001-5965.2019.0286
WANG Baoxing, MENG Gang, LIN Miao, et al. Design and analysis of a 3-PPP compliant parallel micro-positioning stage[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(4): 798-807. doi: 10.13700/j.bh.1001-5965.2019.0286(in Chinese)
Citation: WANG Baoxing, MENG Gang, LIN Miao, et al. Design and analysis of a 3-PPP compliant parallel micro-positioning stage[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(4): 798-807. doi: 10.13700/j.bh.1001-5965.2019.0286(in Chinese)

3-PPP型柔性并联微定位平台的设计与分析

doi: 10.13700/j.bh.1001-5965.2019.0286
基金项目: 

江苏省“六大人才高峰”计划 ZBZZ-012

高等学校学科创新引智计划 B18027

江苏省研究生创新计划 SJCX18-0630

江苏省研究生创新计划 KYCX18-1846

详细信息
    作者简介:

    王保兴  男, 硕士研究生。主要研究方向:柔性机构学

    孟刚  男, 硕士研究生。主要研究方向:柔性机构学

    林苗  男, 硕士研究生。主要研究方向:柔性机构学

    李巍  男, 博士。主要研究方向:软体机器人

    曹毅  男, 博士, 教授。主要研究方向:并联机器人、混联机器人、柔性机器人、软体机器人

    通讯作者:

    曹毅, E-mail: caoyi@jiangnan.edu.cn

  • 中图分类号: V414.5;TH122

Design and analysis of a 3-PPP compliant parallel micro-positioning stage

Funds: 

The Six Talent Peaks Project in Jiangsu Province ZBZZ-012

"111" Project B18027

Postgraduate Research and Practice Innovation Program of Jiangsu Provence SJCX18-0630

Postgraduate Research and Practice Innovation Program of Jiangsu Provence KYCX18-1846

More Information
  • 摘要:

    为解决现有空间平动柔性并联微定位平台(CPMS)结构布局不紧凑,且多轴驱动时各运动副的寄生运动相互累加,导致平台耦合误差增大的问题。首先,设计了一种基于柔性薄板的分布柔度式3-PPP型柔性并联微定位平台。其次,通过结构优化减小了平台的体积,并消除了支链中移动副寄生运动的累加现象。然后,基于柔度矩阵法建立了平台的输入刚度理论模型,并采用有限元仿真验证了理论模型的正确性;同时计算了平台的固有频率,并探究了其与柔性薄板尺寸参数之间的关系。最后,将结构优化前后的平台通过有限元仿真进行了对比分析。结果表明:结构优化后平台的体积减小了67%,且平台在单轴和多轴驱动时均具有更优的运动解耦特性和输入输出一致性。

     

  • 图 1  3-PPP型柔性并联微定位平台的初始结构

    Figure 1.  Original structure of a 3-PPP compliant parallel micro-positioning stage

    图 2  支链3中被动副的变形示意图

    Figure 2.  Schematic diagram of deformation of passive joints in limb 3

    图 3  反向串联方法示意图

    Figure 3.  Schematic diagram of inversion series method

    图 4  结构优化后的柔性支链

    Figure 4.  One compliant limb after structure optimization

    图 5  结构优化后的微定位平台

    Figure 5.  Micro-positioning stage after structure optimization

    图 6  一端固定的等截面梁

    Figure 6.  A constant section beam with one end fixed

    图 7  z轴方向的柔性支链

    Figure 7.  Compliant limb in z-axis direction

    图 8  驱动力为50 N时平台的仿真结果

    Figure 8.  Simulation result of stage with 50 N actuating force

    图 9  驱动力与参考点位移之间的关系

    Figure 9.  Relationship between actuating force and reference point displacement

    图 10  平台的1~6阶模态振型

    Figure 10.  1-6 order mode shapes of stage

    图 11  平台的固有频率与柔性薄板尺寸参数之间的关系

    Figure 11.  Relationship between natural frequency of stage and compliant sheet size parameters

    图 12  不同输入条件下平台的仿真分析

    Figure 12.  Simulation analysis of stage under different input conditions

    图 13  单轴驱动条件下的仿真结果

    Figure 13.  Simulation results with single-axis actuation

    图 14  两轴驱动时平台在z轴方向的耦合位移

    Figure 14.  Coupling displacement of stage in z-axis direction with two-axis actuation

    图 15  三轴驱动时平台的丢失运动

    Figure 15.  Lost motion of stage with three-axis actuation

    表  1  平台的尺寸参数

    Table  1.   Dimension parameters of stage

    参数 数值/mm
    t 0.5
    w 25
    l 40
    H 59
    u1 45.5
    u2 28.5
    s 44
    下载: 导出CSV

    表  2  参考点位移的矩阵法计算值、仿真值及相对误差

    Table  2.   Matrix method calculation values, simulation values and relative error of reference point displacement

    驱动力/N 参考点位移/μm 相对误差/%
    理论计算值 仿真值
    10 70.74 73.15 3.41
    20 141.47 143.36 1.33
    30 212.21 208.78 1.62
    40 282.94 268.73 5.02
    50 353.68 323.36 8.57
    下载: 导出CSV

    表  3  参考点位移非线性法计算值、仿真值及相对误差

    Table  3.   Nonlinear method calculation values, simulation values and relative error of reference point displacement

    驱动力/N 参考点位移/μm 相对误差/%
    理论计算值 仿真值
    10 70.1 73.15 4.35
    20 136.9 143.36 4.72
    30 198.3 208.78 5.28
    40 253.8 268.73 5.88
    50 303.7 323.36 6.47
    下载: 导出CSV

    表  4  平台有限元分析的固有频率

    Table  4.   Natural frequency of stage obtained by finite element analysis

    阶数 1阶 2阶 3阶 4阶 5阶 6阶
    频率/Hz 94.49 94.49 94.49 694.13 700 700.13
    下载: 导出CSV

    表  5  单轴驱动时参考点的耦合位移与丢失运动

    Table  5.   Coupling displacement and lost motion of reference point with single-axis actuation  μm

    平台结构 y轴方向的最大耦合位移 z轴方向的最大耦合位移 x轴方向的最大丢失运动
    初始结构 -1.08 -1.09 0.45
    优化后的结构 -1.04 0.85 0.23
    下载: 导出CSV
  • [1] HOWELL L L.Compliant mechanisms[M].New York:John Wiley and Sons, 2001:2-14.
    [2] 张宪民, 胡凯, 王念峰, 等.基于并行策略的多材料柔顺机构多目标拓扑优化[J].机械工程学报, 2016, 52(19):1-8. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jxgcxb201619001

    ZHANG X M, HU K, WANG N F, etal.Multi-objectivetopology optimization of multiple materials compliant mechanisms based on parallel strategy[J].Journal of Mechanical Engineering, 2016, 52(19):1-8(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jxgcxb201619001
    [3] 周睿, 周辉, 桂和利, 等.基于柔性铰链的二自由度微动平台分析及优化[J].北京航空航天大学学报, 2018, 44(9):199-207. doi: 10.13700/j.bh.1001-5965.2017.0706

    ZHOU R, ZHOU H, GUI H L, et al.Analysis and optimization of 2-DoF micro-positioning stage based on flexible hinges[J].Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(9):199-207(in Chinese). doi: 10.13700/j.bh.1001-5965.2017.0706
    [4] 于靖军, 郝广波, 陈贵敏, 等.柔性机构及其应用研究进展[J].机械工程学报, 2015, 51(13):53-68. http://d.old.wanfangdata.com.cn/Periodical/jxgcxb201513006

    YU J J, HAO G B, CHEN G M, et al.State-of-art of compliant mechanisms and their applications[J].Journal of Mechanical Engineering, 2015, 51(13):53-68(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jxgcxb201513006
    [5] PAOLO D G, ALVISE B, PIERLUIGI B.New MEMS tweezers for the viscoelastic characterization of soft materials at the microscale[J].Micromachines, 2018, 9(1):15-37. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=MDPI000000179845
    [6] DSOUZA R D, NAVIN K P, THEODORIDIS T.Design fabrication and testing of a 2 DOF compliant flexural microgripper[J].Microsystem Technologies, 2018, 24(9):3867-3883. doi: 10.1007/s00542-018-3861-y
    [7] 曹毅, 刘凯, 桂和利, 等.二自由度开口型空间夹持机构研究[J].机械工程学报, 2018, 54(11):94-101. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jxgcxb201811009

    CAO Y, LIU K, GUI H L, et al.The research of one two-degree-of-freedom spatial gripper with opening[J].Journal of Mechanical Engineering, 2018, 54(11):94-101(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jxgcxb201811009
    [8] LIN C, WU Z H, REN Y H, et al.Characteristic analysis of unidirectional multi-driven and large stroke micro/nano-transmission platform[J].Microsystem Technologies, 2017, 23(8):3389-3400. doi: 10.1007/s00542-016-3130-x
    [9] ÖZKALE B, PARREIRA R, BEKDEMIR A, et al.Modular soft robotic microdevices for dexterous biomanipulation[J].Lab on a Chip, 2019, 19(5):778-788. doi: 10.1039/C8LC01200H
    [10] LI C, WANG J, CHEN S C.Flexure-based dynamic-tunable five-axis nanopositioner for parallel nanomanufacturing[J].Precision Engineering, 2016, 45:423-434. doi: 10.1016/j.precisioneng.2016.04.002
    [11] YONG Y K, MOHEIMANI S O R, KENTON B J, et al.Invited review article:High-speed flexure-guided nanopositioning:Mechanical design and control issues[J].Review of Scientific Instruments, 2012, 83(12):121101. doi: 10.1063/1.4765048
    [12] ZHU Z, TO S, ZHU W L, et al.Optimum design of a piezo-actuated triaxial compliant mechanism for nanocutting[J].IEEE Transactions on Industrial Electronics, 2018, 65(8):6362-6371. doi: 10.1109/TIE.2017.2787592
    [13] WATANABE S, ANDO T.High-speed XYZ-nanopositioner for scanning ion conductance microscopy[J].Applied Physics Letters, 2017, 111(11):113106. doi: 10.1063/1.4993296
    [14] HAO G B.Towards the design of monolithic decoupled XYZ compliant parallel mechanisms for multi-function applications[J].Mechanical Sciences, 2013, 4(2):291-302. doi: 10.5194/ms-4-291-2013
    [15] 李海洋, 郝广波, 于靖军, 等.空间平动柔性并联机构的系统设计方法研究[J].机械工程学报, 2018, 54(13):57-65. http://d.old.wanfangdata.com.cn/Periodical/jxgcxb201813006

    LI H Y, HAO G B, YU J J, et al.Systematic approach to the design of spatial translational compliant parallel mechanisms[J].Journal of Mechanical Engineering, 2018, 54(13):57-65(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jxgcxb201813006
    [16] TANG X Y, CHEN I M, LI Q.Design and nonlinear modeling of a large-displacement XYZ flexure parallel mechanism with decoupled kinematic structure[J].Review of Scientific Instruments, 2006, 77(11):115101. doi: 10.1063/1.2364132
    [17] AWTAR S, USTICK J, SEN S.An XYZ parallel-kinematic flexure mechanism with geometrically decoupled degrees of freedom[J].Journal of Mechanisms and Robotics, 2012, 5(1):015001.
    [18] LI Y M, XU Q S.Design and optimization of an XYZ parallel micromanipulator with flexure hinges[J].Journal of Intelligent and Robotic Systems, 2009, 55(4-5):377-402. doi: 10.1007/s10846-008-9300-z
    [19] YUE Y, GAO F, ZHAO X, et al.Relationship among input-force payload stiffness and displacement of a 3-DOF perpendicular parallel micro-manipulator[J].Mechanism and Machine Theory, 2010, 45(5):756-771. doi: 10.1016/j.mechmachtheory.2009.12.006
    [20] WANG N, ZHANG Z Y, ZHANG X M, et al.Optimization of a 2-DOF micro-positioning stage using corrugated flexure units[J].Mechanism and Machine Theory, 2018, 121:683-696. doi: 10.1016/j.mechmachtheory.2017.11.021
    [21] CHAO D H, ZONG G H, LIU R.Design of a 6-DOF compliant manipulator based on serial-parallel architecture[C]//2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics.Piscataway, NJ: IEEE Press, 2005: 765-770.
    [22] KIM D, GWEON D G, SONG I, et al.Optimal design of a flexure hinge-based XYZ atomic force microscopy scanner for minimizing Abbe errors[J].Review of Scientific Instruments, 2005, 76(7):376-391. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=48cec0eac2a708eaa91eb54e93499f02
    [23] XU Q S, ZHU X B, DONG Z G, et al.Nonlinear modeling and analysis of compliant mechanisms with circular flexure hinges based on quadrature beam elements[J].Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2019, 233(9):3277-3285. doi: 10.1177/0954406218802945
    [24] LI Y M, WU Z G.Design analysis and simulation of a novel 3-DOF translational micromanipulator based on the PRB model[J].Mechanism and Machine Theory, 2016, 100:235-258. doi: 10.1016/j.mechmachtheory.2016.02.001
    [25] SHE Y, MENG D S, SU H J, et al.Introducing mass parameters to pseudo-rigid-body models for precisely predicting dynamics of compliant mechanisms[J].Mechanism and Machine Theory, 2018, 126:273-294. doi: 10.1016/j.mechmachtheory.2018.04.005
    [26] KOSEKI Y, TANIKAWA T, KOYACHI N, et al.Kinematic analysis of translational 3-DOF micro parallel mechanism using matrix method[J].IEEE/RSJ International Conference on Intelligent Robots and Systems, 2000, 1(3):786-792. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC026715134
    [27] TANG H, LI Y M.Design analysis and test of a novel 2-DOF nanopositioning system driven by dual mode[J].IEEE Transactions on Robotics, 2013, 29(3):650-662. doi: 10.1109/TRO.2013.2248536
    [28] 余跃庆, 张亚涛, 张绪平, 等.柔顺微夹持机构理论分析与实验[J].农业机械学报, 2018, 49(11):393-398. http://d.old.wanfangdata.com.cn/Periodical/nyjxxb201811047

    YU Y Q, ZHANG Y T, ZHANG X P, et al.Theoretical analysis and experiment on compliant microgripper mechanism[J].Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(11):393-398(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/nyjxxb201811047
    [29] HAO G B, LI H Y, KEMALCAN S, et al.Understanding coupled factors that affect the modelling accuracy of typical planar compliant mechanisms[J].Frontiers of Mechanical Engineering, 2016, 11(2):129-134. doi: 10.1007/s11465-016-0392-z
    [30] 杨志军, 白有盾, 陈新, 等.基于应力刚化效应的动态特性可调微动平台设计新方法[J].机械工程学报, 2015, 51(23):153-159. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jxgcxb201523019

    YANG Z J, BAI Y D, CHEN X, et al.A new design method of dynamic characteristics adjustable micro motion stage based on tension stiffening[J].Journal of Mechanical Engineering, 2015, 51(23):153-159(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jxgcxb201523019
    [31] XAVIER H, ROSS W, KONG X W.On a simplified nonlinear analytical model for the characterization and design optimization of a compliant XY micro-motion stage[J].Robotics and Computer-Integrated Manufacturing, 2018, 49:66-76. doi: 10.1016/j.rcim.2017.05.012
  • 加载中
图(15) / 表(5)
计量
  • 文章访问数:  861
  • HTML全文浏览量:  89
  • PDF下载量:  444
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-10
  • 录用日期:  2019-08-30
  • 网络出版日期:  2020-04-20

目录

    /

    返回文章
    返回
    常见问答