留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

推进剂贮箱区间干涉时变可靠性分析方法

辛腾达 赵继广 崔村燕 段永胜

辛腾达, 赵继广, 崔村燕, 等 . 推进剂贮箱区间干涉时变可靠性分析方法[J]. 北京航空航天大学学报, 2020, 46(4): 739-745. doi: 10.13700/j.bh.1001-5965.2019.0294
引用本文: 辛腾达, 赵继广, 崔村燕, 等 . 推进剂贮箱区间干涉时变可靠性分析方法[J]. 北京航空航天大学学报, 2020, 46(4): 739-745. doi: 10.13700/j.bh.1001-5965.2019.0294
XIN Tengda, ZHAO Jiguang, CUI Cunyan, et al. Interval interference time-variant reliability analysis method for propellant tank[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(4): 739-745. doi: 10.13700/j.bh.1001-5965.2019.0294(in Chinese)
Citation: XIN Tengda, ZHAO Jiguang, CUI Cunyan, et al. Interval interference time-variant reliability analysis method for propellant tank[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(4): 739-745. doi: 10.13700/j.bh.1001-5965.2019.0294(in Chinese)

推进剂贮箱区间干涉时变可靠性分析方法

doi: 10.13700/j.bh.1001-5965.2019.0294
详细信息
    作者简介:

    辛腾达, 男, 博士研究生。主要研究方向:飞行器测试与发射

    赵继广, 男, 博士, 教授, 博士生导师。主要研究方向:航天任务分析与设计

    崔村燕, 女, 博士, 副教授, 硕士生导师。主要研究方向:航天发射安全

    段永胜, 男, 博士, 讲师。主要研究方向:航天任务可靠性

    通讯作者:

    崔村燕, E-mail: 13661315668@126.com

  • 中图分类号: V555.+1

Interval interference time-variant reliability analysis method for propellant tank

More Information
  • 摘要:

    在推进剂贮箱服役期内,由于材料强度退化及外界随机载荷等不确定因素的存在,其可靠性表现为时变特性。基于区间理论与应力-强度干涉理论,为推进剂贮箱时变可靠性分析提供了一种区间干涉时变可靠性分析方法。通过对椭球底圆柱贮箱应力进行分析,根据贮箱等效应力分布与强度幂指数退化模型,将应力与强度转换为时变区间变量的形式。结合应力-强度干涉理论,将任意时刻应力与强度区间转换为标准化区间,根据临界状态函数与标准化区间的位置关系,定义区间干涉时变可靠性指标。结合示例参数对推进剂贮箱时变可靠性进行了分析,并与服从正态分布的应力-强度干涉可靠性方法及区间可靠性方法分析结果进行了对比,验证了所提方法的有效性。

     

  • 图 1  椭球底圆柱贮箱模型

    Figure 1.  Cylindrical tank model with ellipsoid bottom

    图 2  临界状态函数与标准化区间

    Figure 2.  Critical state function and normalized interval

    图 3  k=2,k=1,k=1/2时可靠性指标

    Figure 3.  Reliability index when k=2, k=1 and k=1/2

    图 4  贮箱椭球下底、圆柱筒和椭球上底可靠性指标

    Figure 4.  Reliability indexes of ellipsoid roof, cylinder and ellipsoid bottom

    表  1  贮箱示例参数

    Table  1.   Sample parameters of tank

    参数 数值
    m 2
    ρ/(kg·m-3) 1 000
    P/MPa 0.1
    Z/t 280
    h/m 10.5
    T/h 50 000
    γ 4
    a/m 2
    hc/m 10
    δc, δb/mm 4
    δr/mm 3
    Rr(X, 0)/MPa 30
    Rc(X, 0)/MPa 300
    R(X, T)/MPa 200
    下载: 导出CSV

    表  2  贮箱应力区间参数

    Table  2.   Parameters of tank stress interval MPa

    贮箱 Sc(Y, t) Sr(Y, t)
    上底 104.89 47.15 30 0 91.02 43.87
    圆柱筒 131.10 82.07 30 0 121.59 39.52
    下底 160.36 75.03 30 0 132.70 57.67
    下载: 导出CSV
  • [1] SUDRET B.Analytical derivation of the outcrossing rate in time-variant reliability problems[J].Structure and Infrastructure Engineering, 2008, 4(5):353-362. doi: 10.1080/15732470701270058
    [2] JIANG C, HUANG X P, WEI X P, et al.A time-variant reliability analysis method for structural systems based on stochastic process discretization[J].International Journal of Mechanics and Materials in Design, 2017, 13(2):173-193. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=995ad6ae9c87c11c0904ba7ff67ca4c9
    [3] ANDRIEU-RENAUD C, SUDRET B, LEMAIRE M.The PHI2 method:A way to compute time-variant reliability[J].Reliability Engineering & System Safety, 2004, 84(1):75-86.
    [4] SHI Y, LV Z Z.Dynamic reliability analysis model for structure with both random and interval uncertainties[J].International Journal of Mechanics and Materials in Design, 2018, 15(3):521-537.
    [5] PENG Y Z, YU W, ZI Y Y, et al.Dynamic reliability assessment and prediction for repairable systems with interval-censored data[J].Reliability Engineering & System Safety, 2017, 159:301-309. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d52ed3005b1315b3b4e952b6cea3c315
    [6] WANG Z Q, CHEN W.Time-variant reliability assessment through equivalent stochastic process transformation[J].Reliability Engineering & System Safety, 2016, 152:166-175. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2d98b7254a45796433bfef4bb8d991fa
    [7] YANG D Y, TENG J G, FRANGOPOL D M.Cross-entropy-based adaptive importance sampling for time-dependent reliability analysis of deterioration structures[J].Structural Safety, 2017, 66:38-50. doi: 10.1016/j.strusafe.2016.12.006
    [8] ZHANG X Q, GAO H Y, HUANG H Z, et al.Dynamic reliability modeling for system analysis under complex load[J].Reliability Engineering & System Safety, 2018, 180:345-351.
    [9] XIA B Z, WNAG L F.Non-probabilistic interval process analysis of time-varying uncertain structures[J].Engineering Structures, 2018, 175:101-112. doi: 10.1016/j.engstruct.2018.07.098
    [10] BEN-HAIM H Y.A non-probabilistic measure of reliability of linear systems based on expansion of convex models[J].Structural Safety, 1995, 17(2):91-109. http://cn.bing.com/academic/profile?id=d81f3a4704b00b944e3a2861c74cc7ef&encoded=0&v=paper_preview&mkt=zh-cn
    [11] ELISHAKOFF I.Discussion on:A non-probabilistic concept of reliability[J].Structural Safety, 1995, 17(3):195-199. doi: 10.1016/0167-4730(95)00010-2
    [12] GUO S X, LV Z Z.Interval arithmetic and static interval finite element method[J].Applied Mathematics & Mechanics, 2001, 22(12):1390-1396. http://cn.bing.com/academic/profile?id=247ffdc657e5d1f350995150a34f5085&encoded=0&v=paper_preview&mkt=zh-cn
    [13] QIU Z P, WANG X J.Comparison of dynamic response of structures with uncertain-but-bounded parameters using non-probabilistic interval analysis method and probabilistic approach[J].International Journal of Solids & Structures, 2003, 40(20):5423-5439. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=459ec8cb6f949512e66d4225155e0176
    [14] WANG X J, WANG R X, WANG L, et al.An efficient single-loop strategy for reliability-based multidisciplinary design optimization under non-probabilistic set theory[J].Aerospace Science & Technology, 2017, 73:148-163. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c690974d7d7ebb38841083cc72690cde
    [15] NI B Y, JIANG C, HUANG Z L.Discussions on non-probabilistic convex modelling for uncertain problems[J].Applied Mathematical Modelling, 2018, 59:54-85. doi: 10.1016/j.apm.2018.01.026
    [16] 王心清.结构设计[M].2版.北京:中国宇航出版社, 2009:19-35.

    WANG X Q.The structural design[M].2nd ed.Beijing:China Astronautic Publishing House, 2009:19-35(in Chinese).
    [17] SCHAFF J R, DAVIDSON B D.Life prediction methodology for composite structures.Part I-Constant amplitude and two-stress level fatigue[J].Journal of Composite Materials, 1997, 31(2):158-181. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1177/002199839703100202
    [18] AN Z W, HUANG H Z, LIU Y.A discrete stress-strength interference model based on universal generating function[J].Reliability Engineering & System Safety, 2008, 93(10):1485-1490. http://cn.bing.com/academic/profile?id=3e5461619ad2c14db549940ad207e7ff&encoded=0&v=paper_preview&mkt=zh-cn
    [19] SU H Z, LI J Y, WEN Z P, et al.Dynamic non-probabilistic reliability evaluation and service life prediction for arch dams considering time-varying effects[J].Applied Mathematical Modelling, 2016, 40(16):6908-6923. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bc0f12eb71eab43d3d0be01c76a4a96e
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  694
  • HTML全文浏览量:  153
  • PDF下载量:  152
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-10
  • 录用日期:  2019-09-06
  • 网络出版日期:  2020-04-20

目录

    /

    返回文章
    返回
    常见问答