留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类复杂通信条件下高阶线性群系统编队控制

石晓航 张庆杰 吕俊伟

陈锋, 刘越, 王涌天等 . 基于多通道投影系统的纹理表面实时绘制技术[J]. 北京航空航天大学学报, 2015, 41(3): 466-471. doi: 10.13700/j.bh.1001-5965.2014.0466
引用本文: 石晓航, 张庆杰, 吕俊伟等 . 一类复杂通信条件下高阶线性群系统编队控制[J]. 北京航空航天大学学报, 2020, 46(4): 769-780. doi: 10.13700/j.bh.1001-5965.2019.0302
CHEN Feng, LIU Yue, WANG Yongtianet al. Real-time drawing technique for textured surface based on multi-projector system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(3): 466-471. doi: 10.13700/j.bh.1001-5965.2014.0466(in Chinese)
Citation: SHI Xiaohang, ZHANG Qingjie, LYU Junweiet al. Formation control for high-order linear swarm systems with complex communication conditions[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(4): 769-780. doi: 10.13700/j.bh.1001-5965.2019.0302(in Chinese)

一类复杂通信条件下高阶线性群系统编队控制

doi: 10.13700/j.bh.1001-5965.2019.0302
基金项目: 

国家自然科学基金 61004002

航空科学基金 20155884012

详细信息
    作者简介:

    石晓航, 男, 博士, 讲师。主要研究方向:群系统编队控制

    张庆杰, 男, 博士, 副教授, 硕士生导师。主要研究方向:群系统编队控制

    通讯作者:

    张庆杰, E-mail: nudtzhang@hotmail.com

  • 中图分类号: TP273

Formation control for high-order linear swarm systems with complex communication conditions

Funds: 

National Natural Science Foundation of China 61004002

Aeronautical Science Foundation of China 20155884012

More Information
  • 摘要:

    针对时变时延、拓扑不确定和外部扰动等复杂通信条件下的高阶线性群系统编队控制问题进行研究。首先,建立了群系统编队控制问题的数学描述,并基于一致性最近邻原则给出了编队控制协议框架。其次,提出了群系统实现编队的充要条件。通过状态分解和变量代换,给出了约束条件下,编队控制协议的设计方法。同时,为得到群系统所允许最大时延边界,引入自由权矩阵,得到了保守性较小的线性矩阵不等式(LMI)判据条件。仿真实验验证了编队控制方法对于有界时变时延、拓扑不确定以及外部扰动具有一定的鲁棒性。

     

  • 图 1  通信拓扑G

    Figure 1.  Communication topology G

    图 2  8个主体的状态和c(t)的状态在不同时刻的截图

    Figure 2.  Snapshot of states of eight agents and c(t) at different moments

    图 3  主体与编队的状态差值曲线

    Figure 3.  State curves of differences between agents and formation

    图 4  8个主体的性能指标曲线

    Figure 4.  Performance index curves of eight agents

  • [1] KOPFSTEDT T, MUKAI M, FUJITA M.Control of formations of UAVs for surveillance and reconnaissance missions[C]//Proceedings of the 17th World Congress.Piscataway, NJ: IEEE Press, 2008: 6-11.
    [2] NIGAM N, BIENIAWSKI S, KROO I, et al.Control of multiple UAVs for persistent surveillance:Algorithm and flight test results[J].IEEE Transactions on Control Systems Technology, 2012, 20(5):1236-1251. doi: 10.1109/TCST.2011.2167331
    [3] SHAMES I, FIDAN B, ANDERSON B D.Close target reconnaissance using autonomous UAV formations[C]//Proceedings of the 47th IEEE Conference on Decision and Control.Piscataway, NJ: IEEE Press, 2008: 1729-1734.
    [4] PACK D J, DELIMA P, TOUSSAINT G J.Cooperative control of UAVs for localization of intermittently emitting mobile targets[J].IEEE Transactions on Systems, Man, and Cybernetics.Part B:Cybernetics, 2009, 39(4):959-970. doi: 10.1109/TSMCB.2008.2010865
    [5] KANTOR G, SINGH S, PETERSON R, et al.Distributed search and rescue with robot and sensor teams[J].Springer Tracts in Advanced Robotics, 2003, 24:529-538.
    [6] HURTADO J E, ROBINETT R D I, DOHRMANN C R, et al.Decentralized control for a swarm of vehicles performing source localization[J].Journal of Intelligent & Robotic Systems, 2004, 41:1-18.
    [7] YAN W S, FANG X P, LI J B.Formation optimization for AUV localization with range-dependent measurements noise[J].IEEE Communications Letters, 2014, 18(9):1579-1582. doi: 10.1109/LCOMM.2014.2344033
    [8] SIVAKUMAR A, TAN C K Y.UAV swarm coordination using cooperative control for establishing a wireless communications backbone[C]//International Conference on Autonomous Agents & Multi-agent Systems.Red Hook, NY: IFAAMAS, 2010: 1157-1164.
    [9] SOBIESIAK L A, DAMAREN C J.Lorentz-augmented spacecraft formation reconfiguration[J].IEEE Transactions on Control Systems Technology, 2016, 24(2):514-524.
    [10] ZHU S Q, WANG D W, LOW C B.Cooperative control of multiple UAVs for moving source seeking[J].Journal of Intelligent & Robotic Systems, 2014, 74:333-346.
    [11] WANG P K C. Navigation strategies for multiple autonomous mobile robots moving in formation[J].Journal of Robotic Systems, 1991, 8(2):177-195. doi: 10.1002/rob.4620080204
    [12] DESAI J P, OSTROWSKI J, KUMAR V.Modeling and control of formations of non-holonomic mobile robots[J].IEEE Transactions on Robotics and Automation, 2001, 17(6):905-908. doi: 10.1109/70.976023
    [13] BALCH T, ARKIN R.Behavior-based formation control for multi-robot teams[J].IEEE Transactions on Robotics and Automation, 1998, 14(6):926-939. doi: 10.1109/70.736776
    [14] LEWIS M, TAN K.High precision formation control of mobile robots using virtual structures[J].Autonomous Robots, 1997, 4(4):387-403. doi: 10.1023/A:1008814708459
    [15] REN W.Consensus strategies for cooperative control of vehicle formation[J].IET Control Theory and Application, 2007, 1(2):505-512. doi: 10.1049/iet-cta:20050401
    [16] REN W, SORENSEN N.Distributed coordination architecture for multi-robot formation control[J].Robotics and Autonomous Systems, 2008, 56(4):324-333. doi: 10.1016/j.robot.2007.08.005
    [17] FAX J A, MURRAY R M.Information flow and cooperative control of vehicle formations[C]//15th IFAC World Congress.Piscataway, NJ: IEEE Press, 2002: 115-120.
    [18] LIN Z Y, FRANCIS B, MAGGIORE M.Necessary and sufficient graphical conditions for formation control of unicycles[J].IEEE Transactions on Automatic Control, 2005, 50(1):121-127.
    [19] FENG X, LONG W, JIE C, et al.Finite-time formation control for multi-agent systems[J].Automatica, 2009, 45(11):2605-2611. doi: 10.1016/j.automatica.2009.07.012
    [20] SEO J, AHN C, KIM Y.Controller design for UAV formation flight using consensus based decentralized approach[C]//Proceedings of AIAA Infotech@Aerospace Conference.Reston: AIAA, 2009: 1-11.
    [21] DONG X W, YU B C, SHI Z Y, et al.Time-varying formation control for unmanned aerial vehicles:Theories and applications[J].IEEE Transactions on Control Systems Technology, 2015, 23(1):340-348. doi: 10.1109/TCST.2014.2314460
    [22] LAFFERRIERE G, WILLIAMS A, CAUGHMAN J, et al.Decentralized control of vehicle formations[J].Systems and Control Letters, 2005, 54(9):899-910. doi: 10.1016/j.sysconle.2005.02.004
    [23] MA C Q, ZHANG J F.On formability of linear continuous-time multi-agent systems[J].Journal of Systems Science and Complexity, 2012, 25(1):13-29. doi: 10.1007/s11424-012-0108-3
    [24] LIU C L, TIAN Y P.Formation control of multi-agent systems with heterogeneous communication delays[J].International Journal of Systems Science, 2009, 40(6):627-636. doi: 10.1080/00207720902755762
    [25] RUDY C G, NEJAT O.Stability of formation control using a consensus protocol under directed communications with two time delays and delay scheduling[J].International Journal of Systems Science, 2016, 47(2):433-449.
    [26] QIN L G, HE X, ZHOU D H.Distributed proportion-integration-derivation formation control for second-order multi-agent systems with communication time delays[J].Neurocomputing, 2017, 267:271-282. doi: 10.1016/j.neucom.2017.05.088
    [27] ABDELKADER A, ABDELHAMID T.Formation control of VTOL unmanned aerial vehicles with communication delays[J].Automatica, 2011, 47(11):2383-2394. doi: 10.1016/j.automatica.2011.08.042
    [28] LU X Q, AUSTIN F, CHEN S H.Formation control for second-order multi-agent systems with time-varying delays under directed topology[J].Communications in Nonlinear Science and Numerical Simulation, 2012, 17(3):1382-1391. doi: 10.1016/j.cnsns.2011.07.029
    [29] DONG X W, XI J X, LU G, et al.Formation control for high-order linear time-invariant multi-agent systems with time delays[J].IEEE Transactions on Control of Network Systems, 2014, 1(3):232-240. doi: 10.1109/TCNS.2014.2337972
    [30] XUE D, YAO J, WANG J, et al.Formation control of multi-agent systems with stochastic switching topology and time-varying communication delays[J].IET Control Theory and Applications, 2013, 7(13):1689-1698. doi: 10.1049/iet-cta.2011.0325
    [31] XUE R B, CAI G H.Formation flight control of multi-UAV system with communication constraints[J].Journal of Aerospace Technology and Management, 2016, 8(2):203-210. doi: 10.5028/jatm.v8i2.608
    [32] 马培蓓, 雷明, 纪军, 等.均等通信时滞下多UAV协同编队控制[J].航空学报, 2017, 38(S1):721551.

    MA P B, LEI M, JI J, et al.Control of multi-UAV cooperative formation with equality communication time-delay[J].Acta Aeronautica et Astronautica Sinica, 2017, 38(S1):721551(in Chinese).
    [33] LI X S.Control for formation of multi-agent systems with time-varying delays and uncertainties based on LMI[J].Automatika, 2016, 57(2):441-451. doi: 10.7305/automatika.2016.10.1012
    [34] XI J X, YAO Z C, LIU G B, et al.Robust L2 consensus of high-order swarm systems with time-varying delays[J].Control and Cybernetics, 2014, 43(1), 59-77.
    [35] DONG X W, XI J X, SHI Z Y, et al.Practical consensus for high-order linear time-invariant swarm systems with interaction uncertainties, time-varying delays and external disturbances[J].International Journal of Systems Science, 2013, 44(10):1843-1856. doi: 10.1080/00207721.2012.670296
    [36] REN W, BEARD R W.Consensus seeking in multiagent systems under dynamically changing interaction topologies[J].IEEE Transactions on Automatic Control, 2005, 50(5):655-661. doi: 10.1109/TAC.2005.846556
    [37] LIU W, ZHOU S L, WU Q P, et al.H consensus of multi-agent systems in directed networks with Lipschitz non-linear dynamics[J].Transactions of the Institute of Measurement and Control, 2016, 39(12):1877-1884.
    [38] BOYD S, GHAOUI L E, FERON E, et al.Linear matrix inequalities in system and control theory[M].Philadelphia, PA:SIAM, 1994.
    [39] GU K.A further refinement of discretized Lyapunov functional method for the stability of time-delay systems[J].International Journal of Control, 2001, 74(10):967-976. doi: 10.1080/00207170110047190
    [40] PETERSEN I R, HOLLOT C V.A Riccati equation approach to the stabilization of uncertain linear systems[J].Automatica, 1986, 22(4):397-411. doi: 10.1016/0005-1098(86)90045-2
    [41] BEE O C E O.Matrix analysis[M].New York:Cambridge University Press, 1985.
    [42] XI J X, SHI Z Y, ZHONG Y S.Consensus analysis and design for high-order linear swarm systems with time-varying delays[J].Physica A, 2011, 390(23-24):4114-4123. doi: 10.1016/j.physa.2011.06.045
  • 期刊类型引用(6)

    1. 王琳,张庆杰,陈宏伟. 基于领航者跟随者的群系统保性能编队控制. 北京航空航天大学学报. 2024(03): 1037-1046 . 本站查看
    2. 秦明星,王忠,李海龙,刘鑫. 基于分布式模型预测的无人机编队避障控制. 北京航空航天大学学报. 2024(06): 1969-1981 . 本站查看
    3. 王琳,张庆杰,陈宏伟. 切换拓扑下群系统保性能编队形成问题优化控制方法. 控制与决策. 2023(12): 3436-3444 . 百度学术
    4. 康宇航,毛凯,程俊,罗德林,刘伟,王士星. 联合连通有向切换拓扑条件下无人机集群鲁棒编队控制. 中国科学:技术科学. 2023(12): 2115-2126 . 百度学术
    5. 康宇航,戴洪德,祁亚辉,张邦楚,刘玄冰,程俊. 无人集群系统时变编队H_∞控制. 北京航空航天大学学报. 2021(02): 271-280 . 本站查看
    6. 于美妍,杨洪勇,孙玉娇. 基于Backstepping的三轮机器人编队控制. 复杂系统与复杂性科学. 2021(03): 28-34 . 百度学术

    其他类型引用(4)

  • 加载中
图(4)
计量
  • 文章访问数:  646
  • HTML全文浏览量:  126
  • PDF下载量:  136
  • 被引次数: 10
出版历程
  • 收稿日期:  2019-06-17
  • 录用日期:  2019-08-23
  • 网络出版日期:  2020-04-20

目录

    /

    返回文章
    返回
    常见问答