-
摘要:
时间触发以太网(TTE)中的速率约束(RC)流量为事件触发流量,在RC流量动态调度的应用场景下,若能预测未来短时间内数条RC流量到达交换节点的序列,使交换节点提前进行调度决策,以减小RC流量时延,提高网络吞吐量。对RC流量到达序列预测问题进行了研究,建立了RC流量的到达序列模型,提出了基于长短期记忆网络(LSTM)算法的RC流量预测算法。利用OMNET++工具进行TTE网络仿真,得到多组混合关键性配置下RC流量的传输数据;以此作为输入样本对预测算法进行训练和测试。实验结果显示,LSTM算法在RC流量预测问题的准确率达到了70%以上。通过对比实验说明所提算法适用于RC流量预测场景。
-
关键词:
- 时间触发以太网(TTE)网络 /
- 速率约束(RC)流量 /
- 流量预测 /
- 长短期记忆网络(LSTM)算法 /
- 网络仿真
Abstract:The rate constraint (RC) traffic in time triggered Ethernet (TTE) is event-triggered traffic. In the application scenario of dynamic scheduling of RC traffic, if it can predict the sequence of several RC traffic arriving at the switching node in a short time in the future, the switching node can make scheduling decision in advance to reduce RC traffic delay and improve network throughput. In this paper, the arrival sequence model of RC traffic is established, and an algorithm of RC traffic prediction based on long-term memory network (LSTM) is proposed. Using OMNET++ tool to simulate TTE network, we can get the data of RC traffic transmission under multiple groups of mixed critical configuration, and train and test the prediction algorithm as an input sample. The experimental results show that the accuracy of LSTM algorithm in RC traffic prediction is more than 70%. The experimental results show that the proposed algorithm is suitable for RC traffic prediction scenarios.
-
表 1 TTE网络流量配置
Table 1. TTE network traffic configuration
消息类型 源节点 目的节点 数据帧长/Byte 周期/ms TT1 ES1 ES12 528 64 TT2 ES11 ES21 215 12 TT3 ES5 ES11 1505 16 TT4 ES3 ES2 1273 84 TT5 ES21 ES21 659 40 RC1 ES1 ES21 688 2 RC2 ES4 ES12 808 16 RC3 ES2 ES21 433 4 RC4 ES3 ES11 433 16 RC5 ES5 ES21 1518 4 RC6 ES1 ES4 1022 8 RC7 ES3 ES21 208 32 RC8 ES11 ES21 574 2 RC9 ES3 ES21 828 4 表 2 RC流量传输数据
Table 2. Transmission data of RC traffic
到达时间/ms 流量编号 包帧长/Byte 3.600852 RC1 688 4.78901 RC3 433 5.600852 RC1 688 7.600852 RC1 688 8.78901 RC3 433 9.600852 RC1 688 10.391926 RC6 1022 11.600852 RC1 688 12.78901 RC3 433 13.600852 RC1 688 15.600852 RC1 688 16.78901 RC3 433 19.4391926 RC6 1022 203.553353 RC3 433 207.553353 RC3 433 210.391926 RC6 1022 211.553353 RC3 433 表 3 算法预测结果比较
Table 3. Comparison of algorithm prediction results
算法模型 *5%准确率/% *8%准确率/% 均方误差 LSTM 75.3 93.2 4.5 RNN 42.8 47.2 40.4 DNN 33.9 40.8 53 注:*5%准确率指预测值误差小于RC流量约束最长帧的5%;*8%准确率指预测值误差小于RC流量约束最长帧的8%。 -
[1] 熊华钢, 王中华.先进航空电子综合技术[M].北京:国防工业出版社, 2009:2-13.XIONG H G, WANG Z H.Advanced avionics integrated technology[M].Beijing:National Defense Industry Press, 2009:2-13(in Chinese). [2] WOLFIG R, JAKOVLJEVIC M.Distributed IMA and DO-297: Architectural, communication and certification attributes[C]//Proceedings Digital Avionics Systems Conference.Piscataway, NJ: IEEE Press, 2008: 1.E.4-1-1.E.4-10. [3] SAE Aerospace. Time-triggered Ethernet: AS6802TM[S].Englewood, CO: SAE International, 2011. [4] STENER W, BAUER G, HALL B, et al.TTEthernet dataflow concept[C]//8th IEEE International Symposium on Network Computing and Applications.Piscataway, NJ: IEEE Press, 2009: 319-322. [5] 熊华钢, 李峭, 黄永葵.航空电子全双工交换式以太网标准研究(续)[J].航空标准化与质量, 2008(2):20-23. http://d.old.wanfangdata.com.cn/Periodical/hkbzhyzl200802008XIONG H G, LI Q, HUANG Y K.Research on avionics full duplex switched Ethernet standards (continued)[J].Aviation Standardization and Quality, 2008(2):20-23(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkbzhyzl200802008 [6] ARINC 664P7-1. Aircraft data network, Part 7: Avionics full duplex switched ethernet (AFDX) network: ARINC 664P7-2005[S].Rio Rancho, NM: ANRIC Standards, 2005. [7] 尹伟, 缪万胜, 王念伟, 等.大规模复杂系统的开放式软件架构研究[J].航空电子技术, 2017, 48(2):23-29. http://d.old.wanfangdata.com.cn/Periodical/hkdzjs201702005YIN W, MIU W S, WANG N W, et al.Open software architecture for large-scale complex systems[J].Avionics Technology, 2017, 48(2):23-29(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkdzjs201702005 [8] SANG A, LI S.A predictability analysis of network traffic[J].Computer Networks, 2002, 39(4):329-345. https://www.sciencedirect.com/science/article/abs/pii/S1389128601003048 [9] LEVIN M, TSAO Y D.On forecasting freeway occupancies and volumes[J].Transportation Research Record Journal of the Transportation Research Board, 1980, 773:47-49. https://trid.trb.org/view/167550 [10] 张九跃, 焦玉栋.基于RBF神经网络的短时交通流量预测[J].山东交通学院学报, 2008, 16(3):32-36. http://d.old.wanfangdata.com.cn/Periodical/sdjtxyxb200803008ZHANG J Y, JIAO Y D.Short term traffic flow prediction based on RBF neural network[J].Journal of Shandong Jiaotong University, 2008, 16(3):32-36(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/sdjtxyxb200803008 [11] 赵岩, 何鹏.网络流量的非线性组合预测模型应用研究[J].计算机仿真, 2012, 29(6):140-144. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsjfz201206036ZHAO Y, HE P.Application of nonlinear combination forecasting model for network traffic[J].Computer Simulation, 2012, 29(6):140-144(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsjfz201206036 [12] 肖甫, 赵帅帅, 王少辉, 等.基于智能优化的分布式网络流量预测方法[J].北京邮电大学学报, 2015, 38(S1):45-48. http://d.old.wanfangdata.com.cn/Periodical/bjyddx2015z1011XIAO F, ZHAO S S, WANG S H, et al.Distributed network traffic prediction method based on intelligent optimization[J].Journal of Beijing University of Posts and Telecommunications, 2015, 38(S1):45-48(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/bjyddx2015z1011 [13] 赵季红, 王明欣, 曲桦, 等.一种基于自适应KLMS的卫星网络流量预测算法[J].北京邮电大学学报, 2018, 41(3):51-55. http://d.old.wanfangdata.com.cn/Periodical/bjyddx201803009ZHAO J H, WANG M X, QU H, et al.A satellite network traffic prediction algorithm based on adaptive KLMS[J].Journal of Beijing University of Posts and Telecommunications, 2018, 41(3):51-55(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/bjyddx201803009 [14] 焦文喆, 翟正军, 王国庆.时间触发AFDX调度设计及实时性分析[J].计算机工程, 2016, 42(7):42-48. http://d.old.wanfangdata.com.cn/Periodical/jsjgc201607007JIAO W Z, ZHAI Z J, WANG G Q.Design and real-time analysis of time-triggered AFDX scheduling[J].Computer Engineering, 2016, 42(7):42-48(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jsjgc201607007 [15] 黄婷婷, 余磊.SDAE-LSTM模型在金融时间序列预测中的应用[J].计算机工程与应用, 2019, 55(1):142-148. http://d.old.wanfangdata.com.cn/Periodical/jsjgcyyy201901022HUANG T T, YU L.Application of SDAE-LSTM model in financial time series forecasting[J].Computer Engineering and Application, 2019, 55(1):142-148(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jsjgcyyy201901022 [16] 周瑞, 魏正英, 张育斌, 等.基于LSTM递归神经网络的番茄目标产量时间序列预测[J].节水灌溉, 2018(8):66-70. http://d.old.wanfangdata.com.cn/Periodical/jsgg201808014ZHOU R, WEI Z Y, ZHANG Y B, et al.Time series forecast of tomato target yield based on LSTM recursive neural network[J].Water-saving Irrigation, 2018(8):66-70(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jsgg201808014 [17] TAMASSELICEAN D, POP P, STEINER W.Timing analysis of rate constrained traffic for the TTEthernet communication protocol[C]//IEEE International Symposium on Real-Time Distributed Computing.Piscataway, NJ: IEEE Press, 2015: 119-126. [18] BENGIO Y, GOODFELLOW I.深度学习[M].北京:人民邮电出版社, 2017.BENGIO Y, GOODFELLOW I.Deep learning[M].Beijing:Posts and Telecom Press, 2017(in Chinese). [19] 张文刚.基于深度学习的交通预测技术及其在通信中的应用研究[D].成都: 西南交通大学, 2018. http://cdmd.cnki.com.cn/Article/CDMD-10613-1018709289.htmZHANG W G.Traffic forecasting technology based on in-depth learning and its application in communication[D].Chengdu: Southwest Jiaotong University, 2018(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10613-1018709289.htm [20] GERS F, SCHMIDHUBER J, CUMMINS F.Learning to forget:Continual prediction with LSTM[J].Neural Computation, 2000, 12(10):2451-2471. doi: 10.1162/089976600300015015 [21] 周德新, 王彦翔.AFDX网络分析及带宽分配间隔设定策略[J].科学技术与工程, 2016, 16(9):226-230. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxjsygc201609039ZHOU D X, WANG Y X.AFDX network analysis and bandwidth allocation interval setting strategy[J].Science and Technology and Engineering, 2016, 16(9):226-230(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxjsygc201609039 [22] LEÓN A P, PIEDRAHITA E M, SALCEDO O.On-off model applications to communication networks aggregated traffic[J].Cuadernos De Derecho Agrario, 2011, 15(30):129-147.