-
摘要:
针对直升机配平问题,基于CFD/CSD松耦合策略建立了计入旋翼气弹效应的配平分析方法。旋翼桨叶CSD求解器与旋翼CFD求解器以桨叶弹性轴和变距轴线为媒介,通过线性插值方法交换气动载荷和响应数据。CFD模块和CSD模块在时域内推进,旋翼每旋转一圈交互一次数据,以CFD模块计算的气动力来修正配平计算中气弹分析的气动力输入,直到配平量和CFD气动力在迭代过程中不再变化,即得到耦合配平解。以SA349/2“小羚羊”直升机小速度前飞状态为算例,计算表明所提方法收敛迅速、稳定性良好,计算结果与飞行实测值的对比分析验证了方法的有效性,对桨叶气动力曲线及桨涡干扰等现象具有很好的捕捉能力。
Abstract:In this paper, a helicopter trim calculation method based on the CFD/CSD loose coupling strategy is proposed. The CSD solver and rotor CFD solver use the blade elastic axis and pitch axis as media to exchange aerodynamic load and response data through linear interpolation method. In the coupling strategy of this paper, CFD and CSD solver operate in the time domain respectively, and exchange the data once per revolution. The aerodynamic force calculated by CFD solver is used to correct the aerodynamic input of aeroelastic analysis in trim calculation, until the trim parameters and CFD aerodynamic force no longer change in the iterative process, and the coupling trim solutions are obtained. In this paper, the SA349/2 helicopter is taken as an example to calculate the forward flight state. The results show that the coupling method in this paper converges rapidly and has good stability. The comparison between the calculation results and the measured flight values verifies the effectiveness of the proposed method, and it has a good ability to capture the aerodynamic curve of blade and the blade vortex distraction.
-
Key words:
- helicopter /
- CFD/CSD loose coupling /
- trim /
- aerodynamic load /
- moving nested mesh /
- interpolation
-
表 1 SA349/2旋翼桨叶贴体网格规模统计
Table 1. Numbers of body-fitted grid of SA349/2 rotor blade
部件 网格规模 网格数 桨叶 237×163×61 2356491 内侧帽子 153×75×61 699975 外侧帽子 157×81×61 775737 -
[1] PETERS D A, BARWEY D.A general theory of rotorcraft trim[J].Mathematical Problems in Engineering, 1996, 2(1):1-34. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000001087503 [2] POTSDAM M, YEO H, JOHNSON W.Rotor airloads prediction using loose aerodynamic/structural coupling[J].Journal of Aircraft, 2006, 43(3):732-742. doi: 10.2514/1.14006 [3] TUNG C, CARADONNA F X, JOHNSON W.The prediction of transonic flows on an advancing rotor[J].Journal of the American Helicopter Society, 1986, 31(3):4-9. doi: 10.4050/JAHS.31.3.4 [4] SERVERA G, BEAUMIER P, COSTES M.A weak coupling method between the dynamics code HOST and the 3D unsteady Euler code WAVES[J].Aerospace Science and Technology, 2001, 5(6):397-408. doi: 10.1016/S1270-9638(01)01120-8 [5] DATTA A, SITARAMAN J, CHOPRA I, et al.CFD/CSD prediction of rotor vibratory loads in high-speed flight[J].Journal of Aircraft, 2006, 43(6):1698-1709. doi: 10.2514/1.18915 [6] 王海.计入桨叶结构弹性的新型桨尖旋翼流场数值模拟研究[D].南京: 南京航空航天大学, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10287-1011291429.htmWANG H.Numerical simulation of flow field of a new type of propeller tip rotor with structural elasticity[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2010(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10287-1011291429.htm [7] 王俊毅, 招启军.基于CFD/CSD方法的旋翼载荷预测与结构参数影响研究[C]//第二十九届全国直升机年会, 2013: 63-72.WANG J Y, ZHAO Q J.The rotor load prediction and structural parameter influence study based on CFD/CSD coupling[C]//Proceedings of the 29th Annual China Helicopter Conference, 2013: 63-72(in Chinese). [8] 肖宇, 徐国华, 招启军.基于非惯性系的悬停状态旋翼CFD/CSD耦合气动分析[J].空气动力学学报, 2014, 32(5):675-681. http://www.cnki.com.cn/Article/CJFDTotal-KQDX201405017.htmXIAO Y, XU G H, ZHAO Q J.Aerodynamic analysis of rotor in hover state of the non-inertial system based on CFD/CSD coupling[J].Acta Aerodynamica Sinica, 2014, 32(5):675-681(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-KQDX201405017.htm [9] 李建东.基于CFD/CSD耦合的旋翼振动载荷预估方法研究[D].南京: 南京航空航天大学, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10287-1015952056.htmLI J D.The rotor vibratory load predciton based on CFD/CSD coupling[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2015(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10287-1015952056.htm [10] 黄道博.直升机稳态飞行状态旋翼振动载荷的CFD/CSD耦合分析方法[D].南京: 南京航空航天大学, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10287-1016791643.htmHUANG D B.The rotor vibratory load predciton based on CFD/CSD coupling in steady flight[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2016(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10287-1016791643.htm [11] 约翰D·安德森.计算流体力学基础及其应用[M].吴颂平, 刘赵森, 译.北京: 机械工业出版社, 2007.ANDERSON J D.Fundamentals of computational fluid dynamics and its applications [M].WU S P, LIU Z S, translated.Beijing: China Machine Press, 2007(in Chinese). [12] HODGES D H, DOWELL E.Nonlinear equations of motion for the elastic bending and torsion of twisted nonuniform rotor blades: NASA TN D-7818[R].Washington, D.C.: NASA, 1974. [13] BIR G, CHOPRA I.University of maryland advanced rotor code(UMARC)theory manual: UM-AERO 94-18[R].Maryland: University of Maryland, 1994. [14] 殷启波.先进几何外形复合材料旋翼桨叶弹性剪裁方法研究[D].南京: 南京航空航天大学, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10287-1014060931.htmYIN Q B.Study on the elastic tailoring of advanced geometric shape composite rotor blade [D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2014(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10287-1014060931.htm [15] YAMAUCHI G K, HEFFERNAN R M, GAUBERT M.Correlation of SA349/2 helicopter flight test data with a comprehensive rotorcraft model[J].Journal of the American Helicopter Society, 1987, 33(2):31-42. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=E3vFDDzbpqYGd14NxuFEAyNY3sDzFvfXJDk8lQN7z+g= [16] YAMAUCHI G, HEFFERNAN R, GAUBERT M.Hub and blade structural loads measurements of an SA 349/2 helicopter: NASA TM 101040[R].Washington, D.C.: NASA, 1988.