Numerical simulation and comparison of oxygen consumption inerting and hollow membrane inerting in fuel tank
-
摘要:
针对耗氧型惰化系统燃油箱上部空间氧气体积分数随时间变化规律的问题,对耗氧型惰化系统的反应过程建立了数学模型,并通过CFD方法对机载绿色惰化气体产生系统(GOBIGGS)系统和机载惰化气体产生系统(OBIGGS)的惰化过程进行了模拟仿真,并与实验数据进行对比,验证了仿真结果的准确性。研究结果表明,当耗氧型惰化系统抽吸气的体积流量与中空膜惰化产生的富氮气体(NEA)体积流量相同时,耗氧型惰化系统不仅惰化时间短,而且能将燃油箱的O2摩尔分数降至更低。同时耗氧型惰化系统的惰化效果与相同体积流量下NEA0(100%N2)的中空膜惰化效果相近。另外,耗氧型惰化系统使燃油箱气相空间上部O2摩尔分数大于下部O2摩尔分数,中空膜惰化则相反。
Abstract:To solve the problem of oxygen mole fraction changing with time in the upper space of oil tank of oxygen consuming inerting system. A mathematical model was established for the reaction process of the Green On-Board Inert Gas Generation System (GOBIGGS), and the inerting process of the GOBIGGS and the On-Board Inert Gas Generation System (OBIGGS) was simulated by CFD method. The simulation results were compared with the experimental data, which verifies the accuracy of the simulation results. The research results show that, when the flow rate of the exhaust gas from the fuel tank in the GOBIGGS is identical with that of the Nitrogen Enriched Air (NEA) in the OBIGGS, GOBIGGS not only has shorter inerting time than OBIGGS, but also reduces the oxygen mole fraction of the fuel tank to a lower level. The inerting effect of the GOBIGGS is similar to that of the OBIGGS of NEA0 (100%N2) under the same flow rate. GOBIGGS makes the upper oxygen mole fraction greater than the lower oxygen mole fraction in the gas phase space of the fuel tank, while OBIGGS is the opposite.
-
Key words:
- fuel tank /
- inerting /
- numerical simulation /
- oxygen mole fraction /
- gas phase space
-
-
[1] MANATT S A.Fuel tank inerting systeml: US, 4556180[P].1985-12-03. [2] 刘小芳, 刘卫华.飞机供氧和燃油箱惰化技术概况[J].北华航天工业学院学报, 2008, 18(3):4-7. doi: 10.3969/j.issn.1673-7938.2008.03.002LIU X F, LIU W H.Outline of airborne oxygen supplied and its fuel tanks inerted[J].Journal of North China Institute of Aerospace Engineering, 2008, 18(3):4-7(in Chinese). doi: 10.3969/j.issn.1673-7938.2008.03.002 [3] ELY J J, NGUYEN T X, DUDLEY K L, et al.Investigation of electromagnetic field threat to fuel tank wiring of a transport aircraft: NASA/TP-2000-209867[R].Washington, D.C.: NASA, 2000. [4] 肖再华.飞机燃油箱惰化[J].航空科学技术, 2005(1):31-33. doi: 10.3969/j.issn.1007-5453.2005.01.010XIAO Z H.Inerting aircraft fuel tanks[J].Aeronautical Science and Technology, 2005(1):31-33(in Chinese). doi: 10.3969/j.issn.1007-5453.2005.01.010 [5] LANGTON R, CLARK C, HEWITT M, et al.Aircraft fuel systems[M].Hoboken:New John Wiley & Sons, 2009:11-22. [6] JOSEPH K, HYLANDS G.Fuel system inertingl: US, 8828344[P].2014-09-09. [7] DESMARAIS L A, TOLLE F F.Integrated aircraft fuel tank inerting and compartment fire suppression system.Volume 2.Evaluation of nitrogen-enriched air as a fire suppressant AFWAL-TR-83-2021[R].Seattle: Boeing Military Airplane Co, 1983. [8] 张立涛, 张玉忠, 林立刚, 等.中空纤维膜的抗臭氧性能研究[J].膜科学与技术, 2012, 32(5):45-51. doi: 10.3969/j.issn.1007-8924.2012.05.008ZHANG L T, ZHANG Y Z, LIN L G, et al.Study on anti-ozone properties of hollow fiber membranes[J].Membrane Science and Technology, 2012, 32(5):45-51(in Chinese). doi: 10.3969/j.issn.1007-8924.2012.05.008 [9] WALKER S, JUNG W, ROBERTSON S.Demonstration of a novel catalyst based green on board inert gas generation system(GOBIGGSTM) for fuel tank inerting[C]//The AHS 69th Annual Forum.Phoenix: [s.n.].2013. [10] 刘夙春, 邱献双.一种新型的飞机油箱催化惰化系统[J].航空科学技术, 2011(4):27-29. doi: 10.3969/j.issn.1007-5453.2011.04.009LIU S C, QIU X S.A new fuel tank catalytically inerting system[J].Aeronautical Science and Technology, 2011(4):27-29(in Chinese). doi: 10.3969/j.issn.1007-5453.2011.04.009 [11] JOHNSON R W, ZAKI R, YATES S F.Advanced carbon dioxide fuel tank inerting systeml: US, 7905259[P].2011-03-15. [12] 王志伟, 王学德, 刘卫华, 等.不同进气方式对某民机中央翼油箱惰化性能的影响[J].安全与环境学报, 2012, 12(3):172-176. doi: 10.3969/j.issn.1009-6094.2012.03.041WANG Z W, WANG X W, LIU W H, et al.Influence of different distribution methods on the inerting process of a civil airplane center wing tank[J].Journal of Safety and Environment, 2012, 12(3):172-176(in Chinese). doi: 10.3969/j.issn.1009-6094.2012.03.041 [13] 汪明明, 冯诗愚, 蒋军昌, 等.飞机燃油箱中空膜与洗涤惰化技术比较分析[J].南京航空航天大学学报, 2010, 42(5):614-619. doi: 10.3969/j.issn.1005-2615.2010.05.014WANG M M, FENG S Y, JIANG J C, et al.Comparative analysis of fuel washing and scrubbing in aircraft fuel tank[J].Journal of Nanjing University of Aeronautics & Astronautics, 2010, 42(5):614-619(in Chinese). doi: 10.3969/j.issn.1005-2615.2010.05.014 [14] 张声奇, 王学德, 王志伟, 等.多隔舱燃油箱惰化流场的数值模拟与分析[J].航空动力学报, 2013, 28(4):838-843. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201304017ZHANG S Q, WANG X D, WANG Z W, et al.Numerical simulation and analysis of nitrogen-enriched air flow in multi-bay fuel tank[J].Journal of Aerospace Power, 2013, 28(4):838-843(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201304017 [15] 冯诗愚, 李超越, 邵垒, 等.一种燃油箱耗氧型惰化系统地面惰化性能分析[J].航空动力学报, 2017, 32(2):268-274.FENG S Y, LI C Y, SHAO L, et al.Analysis on ground-based inerting performance of a fuel tank green on-board inert gas generation system[J].Journal of Aerospace Power, 2017, 32(2):268-274(in Chinese). [16] BURNS M, CAVAGE W M.Inerting of a vented aircraft fuel tank test article with nitrogen-enriched air: DOT/FAA/AR-01/6[R].Washingtan, D.C.: FAA, 2001. [17] SOCHET I, GILLARD P.Flammability of kerosene in civil and military aviation[J].Journal of Loss Prevention in the Process Industries, 2002, 15(5):335-345. doi: 10.1016/S0950-4230(02)00031-1