-
摘要:
光场成像是一项新兴的非接触式测温技术,针对传统辐射成像温度场重构效率低的问题,开展了基于光场成像的散射性火焰温度场重建研究。在火焰光场成像模型的基础上,以广义源项多流法为正问题模型,利用Landweber算法重构吸收散射性火焰的三维温度场,同时引入最小二乘QR(LSQR)分解算法作为对比以衡量Landweber算法的性能。分析了测量误差对于重建精度的影响,重建结果表明,即使在添加5%测量误差的情况下温度场的平均重建相对误差也仅为0.91%和0.92%,重建结果仍然是合理的。Landweber算法和LSQR算法具有相当的计算精度,但Landweber算法的计算时间是LSQR算法的1/10,其计算效率明显优于LSQR算法。
-
关键词:
- 光场成像 /
- 温度测量 /
- 燃烧诊断 /
- 反问题 /
- Landweber算法
Abstract:Light field imaging technology is an emerging non-contact temperature measurement technology. Aiming at the important role of light field imaging reconstruction algorithm for flame temperature field measurement, the flame temperature field reconstruction algorithm based on light field imaging was studied. A flame temperature field reconstruction method based on the light-field imaging technique is proposed, the generalized sourced multi-flux method is used as the calculation method of direct problem, and Landweber algorithm is applied to reconstruct the 3D temperature field of absorbing and scattering flame based on the flame light-field imaging model. The Least-Square QR (LSQR) decomposition algorithm is also introduced to our study as a comparison to verify the performance of Landweber algorithm. Effect of measurement errors on the computational accuracy is studied. The reconstruction results demonstrate that the temperature field can be reconstructed reasonably by these two methods, and even with 5% measurement error, the mean reconstruction relative errors are 0.91% and 0.92% respectively, which are acceptable. The comparative results show that the Landweber algorithm has the similar calculation precision as LSQR algorithm, but the calculation time of the Landweber algorithm is one tenth of that of LSQR algorithm, and thus the Landweber algorithm is much more efficient than LSQR algorithm.
-
表 1 LSQR算法与Landweber算法计算结果对比
Table 1. Comparison of calculation results between LSQR algorithm and Landweber algorithm
算法 测量误差/% 平均重建相对误差/% 计算时间/s LSQR 1 0.21 23.13 3 0.71 24.31 5 0.91 22.87 Landweber 1 0.22 2.50 3 0.71 2.50 5 0.92 2.50 -
[1] 王飞, 马增益, 严建华, 等.利用火焰图像同时重建温度场和浓度场的试验研究[J].动力工程, 2003, 23(3):2404-2408. http://d.old.wanfangdata.com.cn/Periodical/dlgc200303010WANG F, MA Z Y, YAN J H, et al.Experimental study of temperature and concentration distribution measurement based on flame image[J].Power Engineering, 2003, 23(3):2404-2408(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/dlgc200303010 [2] LUO Z X, ZHOU H C.A combustion-monitoring system with 3-D temperature reconstruction based on flame-image processing technique[J].IEEE Transactions on Instrumentation and Measurement, 2007, 56(5):1877-1882. doi: 10.1109/TIM.2007.904489 [3] CHENG Q, ZHANG X Y, WANG Z C, et al.Simultaneous measurement of three-dimensional temperature distributions and radiative properties based on radiation image processing technology in a gas-fired pilot tubular furnace[J].Heat Transfer Engineering, 2014, 35(6-8):770-779. doi: 10.1080/08832323.2013.838096 [4] ZHOU H C, HAN S D, SHENG F, et al.Visualization of three-dimensional temperature distributions in a large-scale furnace via regularized reconstruction from radiative energy images:Numerical studies[J].Journal of Quantitative Spectroscopy and Radiative Transfer, 2002, 72(4):361-383. doi: 10.1016/S0022-4073(01)00130-3 [5] HUANG Q X, WANG F, LIU D, et al.Reconstruction of soot temperature and volume fraction profiles of an asymmetric flame using stereoscopic tomography[J].Combustion and Flame, 2009, 156(3):565-573. doi: 10.1016/j.combustflame.2009.01.001 [6] XU C L, ZHAO W C, HU J H, et al.Liquid lens-based optical sectioning tomography for three-dimensional flame temperature measurement[J].Fuel, 2017, 196:550-563. doi: 10.1016/j.fuel.2017.01.115 [7] LIU H W, ZHENG S, ZHOU H C.Measurement of soot temperature and volume fraction of axisymmetric ethylene laminar flames using hyper-spectral tomography[J].IEEE Transactions on Instrumentation and Measurement, 2017, 66(2):315-324. doi: 10.1109/TIM.2016.2631798 [8] ZHOU H C, LOU C, CHENG Q, et al.Experimental investigations on visualization of three-dimensional temperature distributions in a large-scale pulverized-coal-fired boiler furnace[J].Proceedings of the Combustion Institute, 2005, 30(1):1699-1706. doi: 10.1016/j.proci.2004.08.090 [9] HOSSAIN M M, LU G, SUN D, et al.Three-dimensional reconstruction of flame temperature and emissivity distribution using optical tomographic and two-colour pyrometric techniques[J].Measurement Science and Technology, 2013, 24(7):074010. doi: 10.1088/0957-0233/24/7/074010 [10] ZHANG X Y, ZHENG S, ZHOU H C, et al.Simultaneously reconstruction of inhomogeneous temperature and radiative properties by radiation image processing[J].International Journal of Thermal Sciences, 2016, 107:121-130. doi: 10.1016/j.ijthermalsci.2016.04.003 [11] NG R, LEVOY M, BREDIF M, et al.Light field photography with a hand-held plenoptic camera[R].[S.l]: Stanford Tech Report CTSR, 2005. [12] SUN J, XU C L, ZHANG B, et al.Three-dimensional temperature field measurement of flame using a single light field camera[J].Optics Express, 2016, 24(2):1118-1132. doi: 10.1364/OE.24.001118 [13] SUN J, HOSSAIN M M, XU C L, et al.A novel calibration method of focused light field camera for 3-D reconstruction of flame temperature[J].Optics Communications, 2017, 390:7-15. doi: 10.1016/j.optcom.2016.12.056 [14] ZHAO W C, ZHANG B, XU C L, et al.Optical sectioning tomographic reconstruction of three-dimensional flame temperature distribution using single light field camera[J].IEEE Sensors Journal, 2018, 18(2):528-539. doi: 10.1109/JSEN.2017.2772899 [15] LIU D, YAN J H, WANG F, et al.Inverse radiation analysis of simultaneous estimation of temperature field and radiative properties in a two-dimensional participating medium[J].International Journal of Heat and Mass Transfer, 2010, 53(21):4474-4481. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dd7a1d92dc736f0a9c61830f4d56c687 [16] LIU D, YAN J H, WANG F, et al.Experimental reconstructions of flame temperature distributions in laboratory-scale and large-scale pulverized-coal fired furnaces by inverse radiation analysis[J].Fuel, 2012, 93:397-403. doi: 10.1016/j.fuel.2011.09.004 [17] LIU D, YAN J, CEN K F.On the treatment of non-optimal regularization parameter influence on temperature distribution reconstruction accuracy in participating medium[J].International Journal of Heat and Mass transfer, 2012, 55(5):1553-1560. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6d1a27173310415317e237e4cf4409b6 [18] QIU S R, LOU C, XU D D.A hybrid method for reconstructing temperature distributions in a radiant enclosure[J].Numerical Heat Transfer Part A-Applications, 2014, 66(10):1097-1111. doi: 10.1080/10407782.2014.901034 [19] ZHANG B, XU C L, WANG S M.Generalized source finite volume method for radiative transfer equation in participating media[J].Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 189:189-197. doi: 10.1016/j.jqsrt.2016.11.025 [20] 宗志雄, 高飞.Landweber迭代正则化的加速[J].武汉理工大学学报, 2008, 30(10):178-180. http://d.old.wanfangdata.com.cn/Periodical/whgydxxb200810047ZONG Z X, GAO F.Acceleration of Landweber method of iterated regularization[J].Journal of Wuhan University of Technology, 2008, 30(10):178-180(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/whgydxxb200810047 [21] HUANG X, QI H, ZHANG X L, et al.Application of Landweber method for 3D temperature field reconstruction based on the light-field imaging technique[J].Journal of Heat Transfer, 2018, 140(8):082701. doi: 10.1115/1.4039305