留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于光场成像技术的散射性火焰温度场重建

黄兴 齐宏 牛志田 任亚涛 阮立明

黄兴, 齐宏, 牛志田, 等 . 基于光场成像技术的散射性火焰温度场重建[J]. 北京航空航天大学学报, 2020, 46(5): 952-959. doi: 10.13700/j.bh.1001-5965.2019.0337
引用本文: 黄兴, 齐宏, 牛志田, 等 . 基于光场成像技术的散射性火焰温度场重建[J]. 北京航空航天大学学报, 2020, 46(5): 952-959. doi: 10.13700/j.bh.1001-5965.2019.0337
HUANG Xing, QI Hong, NIU Zhitian, et al. Temperature field reconstruction of scattering flame based on light-field imaging[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(5): 952-959. doi: 10.13700/j.bh.1001-5965.2019.0337(in Chinese)
Citation: HUANG Xing, QI Hong, NIU Zhitian, et al. Temperature field reconstruction of scattering flame based on light-field imaging[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(5): 952-959. doi: 10.13700/j.bh.1001-5965.2019.0337(in Chinese)

基于光场成像技术的散射性火焰温度场重建

doi: 10.13700/j.bh.1001-5965.2019.0337
基金项目: 

国家自然科学基金 51976044

中国博士后科学基金 2018M6300351

详细信息
    作者简介:

    黄兴  男, 博士研究生。主要研究方向:高温发光火焰温度场及辐射物性测量

    齐宏  男, 博士, 教授, 博士生导师。主要研究方向:热辐射传输与耦合换热、高温弥散颗粒辐射物性及温度测量、辐射传输逆问题及智能优化算法等

    通讯作者:

    齐宏, E-mail: qihong@hit.edu.cn

  • 中图分类号: V435+.12;TK121

Temperature field reconstruction of scattering flame based on light-field imaging

Funds: 

National Natural Science Foundation of China 51976044

China Postdoctoral Science Foundation 2018M6300351

More Information
  • 摘要:

    光场成像是一项新兴的非接触式测温技术,针对传统辐射成像温度场重构效率低的问题,开展了基于光场成像的散射性火焰温度场重建研究。在火焰光场成像模型的基础上,以广义源项多流法为正问题模型,利用Landweber算法重构吸收散射性火焰的三维温度场,同时引入最小二乘QR(LSQR)分解算法作为对比以衡量Landweber算法的性能。分析了测量误差对于重建精度的影响,重建结果表明,即使在添加5%测量误差的情况下温度场的平均重建相对误差也仅为0.91%和0.92%,重建结果仍然是合理的。Landweber算法和LSQR算法具有相当的计算精度,但Landweber算法的计算时间是LSQR算法的1/10,其计算效率明显优于LSQR算法。

     

  • 图 1  光场成像的射线追踪示意图

    Figure 1.  Schematic diagram of ray tracing of light-field imaging

    图 2  基于光场成像与Landweber算法的火焰温度场重建流程

    Figure 2.  Flowchart of flame temperature field reconstruction based on light-field imaging and Landweber algorithm

    图 3  模拟光场图像

    Figure 3.  Simulated light-field image

    图 4  LSQR算法三维温度场重建结果

    Figure 4.  Reconstructed 3D temperature field distribution using LSQR algorithm

    图 5  Landweber算法三维温度场重建结果

    Figure 5.  Reconstructed 3D temperature field distribution using Landweber algorithm

    图 6  LSQR算法重建相对误差分布

    Figure 6.  Reconstruction relative error distribution of LSQR algorithm

    图 7  Landweber算法重建相对误差分布

    Figure 7.  Reconstruction relative error distribution of Landweber algorithm

    表  1  LSQR算法与Landweber算法计算结果对比

    Table  1.   Comparison of calculation results between LSQR algorithm and Landweber algorithm

    算法 测量误差/% 平均重建相对误差/% 计算时间/s
    LSQR 1 0.21 23.13
    3 0.71 24.31
    5 0.91 22.87
    Landweber 1 0.22 2.50
    3 0.71 2.50
    5 0.92 2.50
    下载: 导出CSV
  • [1] 王飞, 马增益, 严建华, 等.利用火焰图像同时重建温度场和浓度场的试验研究[J].动力工程, 2003, 23(3):2404-2408. http://d.old.wanfangdata.com.cn/Periodical/dlgc200303010

    WANG F, MA Z Y, YAN J H, et al.Experimental study of temperature and concentration distribution measurement based on flame image[J].Power Engineering, 2003, 23(3):2404-2408(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/dlgc200303010
    [2] LUO Z X, ZHOU H C.A combustion-monitoring system with 3-D temperature reconstruction based on flame-image processing technique[J].IEEE Transactions on Instrumentation and Measurement, 2007, 56(5):1877-1882. doi: 10.1109/TIM.2007.904489
    [3] CHENG Q, ZHANG X Y, WANG Z C, et al.Simultaneous measurement of three-dimensional temperature distributions and radiative properties based on radiation image processing technology in a gas-fired pilot tubular furnace[J].Heat Transfer Engineering, 2014, 35(6-8):770-779. doi: 10.1080/08832323.2013.838096
    [4] ZHOU H C, HAN S D, SHENG F, et al.Visualization of three-dimensional temperature distributions in a large-scale furnace via regularized reconstruction from radiative energy images:Numerical studies[J].Journal of Quantitative Spectroscopy and Radiative Transfer, 2002, 72(4):361-383. doi: 10.1016/S0022-4073(01)00130-3
    [5] HUANG Q X, WANG F, LIU D, et al.Reconstruction of soot temperature and volume fraction profiles of an asymmetric flame using stereoscopic tomography[J].Combustion and Flame, 2009, 156(3):565-573. doi: 10.1016/j.combustflame.2009.01.001
    [6] XU C L, ZHAO W C, HU J H, et al.Liquid lens-based optical sectioning tomography for three-dimensional flame temperature measurement[J].Fuel, 2017, 196:550-563. doi: 10.1016/j.fuel.2017.01.115
    [7] LIU H W, ZHENG S, ZHOU H C.Measurement of soot temperature and volume fraction of axisymmetric ethylene laminar flames using hyper-spectral tomography[J].IEEE Transactions on Instrumentation and Measurement, 2017, 66(2):315-324. doi: 10.1109/TIM.2016.2631798
    [8] ZHOU H C, LOU C, CHENG Q, et al.Experimental investigations on visualization of three-dimensional temperature distributions in a large-scale pulverized-coal-fired boiler furnace[J].Proceedings of the Combustion Institute, 2005, 30(1):1699-1706. doi: 10.1016/j.proci.2004.08.090
    [9] HOSSAIN M M, LU G, SUN D, et al.Three-dimensional reconstruction of flame temperature and emissivity distribution using optical tomographic and two-colour pyrometric techniques[J].Measurement Science and Technology, 2013, 24(7):074010. doi: 10.1088/0957-0233/24/7/074010
    [10] ZHANG X Y, ZHENG S, ZHOU H C, et al.Simultaneously reconstruction of inhomogeneous temperature and radiative properties by radiation image processing[J].International Journal of Thermal Sciences, 2016, 107:121-130. doi: 10.1016/j.ijthermalsci.2016.04.003
    [11] NG R, LEVOY M, BREDIF M, et al.Light field photography with a hand-held plenoptic camera[R].[S.l]: Stanford Tech Report CTSR, 2005.
    [12] SUN J, XU C L, ZHANG B, et al.Three-dimensional temperature field measurement of flame using a single light field camera[J].Optics Express, 2016, 24(2):1118-1132. doi: 10.1364/OE.24.001118
    [13] SUN J, HOSSAIN M M, XU C L, et al.A novel calibration method of focused light field camera for 3-D reconstruction of flame temperature[J].Optics Communications, 2017, 390:7-15. doi: 10.1016/j.optcom.2016.12.056
    [14] ZHAO W C, ZHANG B, XU C L, et al.Optical sectioning tomographic reconstruction of three-dimensional flame temperature distribution using single light field camera[J].IEEE Sensors Journal, 2018, 18(2):528-539. doi: 10.1109/JSEN.2017.2772899
    [15] LIU D, YAN J H, WANG F, et al.Inverse radiation analysis of simultaneous estimation of temperature field and radiative properties in a two-dimensional participating medium[J].International Journal of Heat and Mass Transfer, 2010, 53(21):4474-4481. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dd7a1d92dc736f0a9c61830f4d56c687
    [16] LIU D, YAN J H, WANG F, et al.Experimental reconstructions of flame temperature distributions in laboratory-scale and large-scale pulverized-coal fired furnaces by inverse radiation analysis[J].Fuel, 2012, 93:397-403. doi: 10.1016/j.fuel.2011.09.004
    [17] LIU D, YAN J, CEN K F.On the treatment of non-optimal regularization parameter influence on temperature distribution reconstruction accuracy in participating medium[J].International Journal of Heat and Mass transfer, 2012, 55(5):1553-1560. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6d1a27173310415317e237e4cf4409b6
    [18] QIU S R, LOU C, XU D D.A hybrid method for reconstructing temperature distributions in a radiant enclosure[J].Numerical Heat Transfer Part A-Applications, 2014, 66(10):1097-1111. doi: 10.1080/10407782.2014.901034
    [19] ZHANG B, XU C L, WANG S M.Generalized source finite volume method for radiative transfer equation in participating media[J].Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 189:189-197. doi: 10.1016/j.jqsrt.2016.11.025
    [20] 宗志雄, 高飞.Landweber迭代正则化的加速[J].武汉理工大学学报, 2008, 30(10):178-180. http://d.old.wanfangdata.com.cn/Periodical/whgydxxb200810047

    ZONG Z X, GAO F.Acceleration of Landweber method of iterated regularization[J].Journal of Wuhan University of Technology, 2008, 30(10):178-180(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/whgydxxb200810047
    [21] HUANG X, QI H, ZHANG X L, et al.Application of Landweber method for 3D temperature field reconstruction based on the light-field imaging technique[J].Journal of Heat Transfer, 2018, 140(8):082701. doi: 10.1115/1.4039305
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  684
  • HTML全文浏览量:  75
  • PDF下载量:  190
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-28
  • 录用日期:  2019-08-30
  • 网络出版日期:  2020-05-20

目录

    /

    返回文章
    返回
    常见问答