留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于散射光强度的碳黑团聚体分形结构和粒径分布同时反演

张俊友 齐宏 王一飞 任亚涛 阮立明

张俊友, 齐宏, 王一飞, 等 . 基于散射光强度的碳黑团聚体分形结构和粒径分布同时反演[J]. 北京航空航天大学学报, 2020, 46(5): 925-932. doi: 10.13700/j.bh.1001-5965.2019.0339
引用本文: 张俊友, 齐宏, 王一飞, 等 . 基于散射光强度的碳黑团聚体分形结构和粒径分布同时反演[J]. 北京航空航天大学学报, 2020, 46(5): 925-932. doi: 10.13700/j.bh.1001-5965.2019.0339
ZHANG Junyou, QI Hong, WANG Yifei, et al. Simultaneous inversion of fractal morphology and particle size distribution of soot aggregate based on light scattering intensity[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(5): 925-932. doi: 10.13700/j.bh.1001-5965.2019.0339(in Chinese)
Citation: ZHANG Junyou, QI Hong, WANG Yifei, et al. Simultaneous inversion of fractal morphology and particle size distribution of soot aggregate based on light scattering intensity[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(5): 925-932. doi: 10.13700/j.bh.1001-5965.2019.0339(in Chinese)

基于散射光强度的碳黑团聚体分形结构和粒径分布同时反演

doi: 10.13700/j.bh.1001-5965.2019.0339
基金项目: 

国家自然科学基金 51976044

国家自然科学基金 51806047

详细信息
    作者简介:

    张俊友  男, 博士研究生。主要研究方向:碳黑团聚体的光学诊断及光散射反问题

    齐宏  男, 博士, 教授, 博士生导师。主要研究方向:热辐射传输与耦合换热、高温弥散颗粒辐射物性及温度测量、辐射传输逆问题及智能优化算法等

    阮立明  男, 博士, 教授, 博士生导师。主要研究方向:热辐射传输与耦合换热、高温弥散颗粒辐射物性及温度测量、微藻新能源利用等

    通讯作者:

    齐宏, E-mail: qihong@hit.edu.cn

  • 中图分类号: V435+.12;TK121

Simultaneous inversion of fractal morphology and particle size distribution of soot aggregate based on light scattering intensity

Funds: 

National Natural Science Foundation of China 51976044

National Natural Science Foundation of China 51806047

More Information
  • 摘要:

    利用散射光信号实现碳黑团聚体分形结构和粒径分布参数的同时反演,在火焰辐射换热模拟和污染物测定方面有着重要应用价值。反演的正问题基于瑞利-德拜-甘斯多分散分形团聚体(RDG-PFA)散射理论,研究了2种信号方案,包括多角度散射及多角度散射-准直透射率。反演前,对比2种信号方案的残余适应度值分布发现,散射与透射信号同时使用有效减弱了反问题的病态性。反演过程基于协方差矩阵自适应的演化策略(CMA-ES)算法,该算法具有很强的局部搜索能力,为快速且稳定地反演各个目标参数提供了保障。反演结果表明了CMA-ES算法较大搜索空间内的可行性和普适性,同时也证明了采用多角度散射-准直透射率的组合信号有效提高了目标参数的反演精度。

     

  • 图 1  碳黑团聚体分形示意图

    Figure 1.  Schematic of fractal morphology of soot aggregate

    图 2  广角光散射测量装置[14]

    Figure 2.  Wide angle light scattering measurement system[14]

    图 3  反演过程

    Figure 3.  Inversion procedure

    图 4  没有噪声与10%高斯噪声下的角度散射光强度对比

    Figure 4.  Comparison of angular light scattering intensity under no noise and 10% Gaussian noise

    图 5  两种信号方案下的残余适应度分布

    Figure 5.  Residual fitness distribution contour under two signal schemes

    图 6  不同高斯噪声下使用不同信号方案反演得到的粒径分布曲线

    Figure 6.  Particle size distribution profiles obtained by inversion results of different signal schemes under different Gaussian noise

    图 7  不同高斯噪声下散射-透射组合信号的收敛过程

    Figure 7.  Convergence process of scattering-transmittance combined signal under different Gaussion noise

    表  1  目标参数的真实值和搜索范围

    Table  1.   Original value and search range of target parameters

    目标参数 真实值 搜索范围
    C 0.8 [0, 10]
    Df 1.65 [1,3]
    μg/nm 90 [0, 500]
    σg 1.6 [0, 10]
    下载: 导出CSV

    表  2  CMA-ES算法的参数设定值

    Table  2.   Parameter value setting of CMA-ES algorithm

    参数 设定值
    maxgens 1000
    eps 10-10
    下载: 导出CSV

    表  3  不同高斯噪声下使用不同信号方案的目标参数反演结果

    Table  3.   Inversion results of target parameters obtained by different signal schemes under different Gaussian noise

    目标参数 真实值 高斯噪声/% 散射 散射+透射
    平均结果 εrel/% 标准差 平均结果 εrel/% 标准差
    C 0.8 0 0.8000 0 6.05×10-5 0.8000 0 1.10×10-4
    6 0.8563 7.03 1.73×10-1 0.7929 0.89 6.19×10-2
    10 0.8323 4.04 1.37×10-1 0.8010 0.12 1.03×10-1
    Df 1.65 0 1.650 0 9.57×10-5 1.600 0 1.58×10-5
    6 1.600 3.06 1.39×10-1 1.654 0.24 5.67×10-2
    10 1.615 2.12 1.49×10-1 1.645 0.29 9.02×10-2
    μg/nm 90 0 90.00 0 2.25×10-2 90.00 0 1.33×10-5
    6 108.81 20.90 2.99×101 90.25 0.28 9.35
    10 109.17 21.30 3.75×101 93.38 3.75 1.77×101
    σg 1.6 0 1.600 0 1.10×10-4 1.650 0 2.29×10-3
    6 1.513 5.45 1.48×10-1 1.600 0 3.79×10-2
    10 1.491 6.78 2.05×10-1 1.584 0.97 7.03×10-2
    下载: 导出CSV
  • [1] BOND T C, BERGSTROM R W.Light absorption by carbonaceous particles:An investigative review[J].Aerosol Science and Technology, 2006, 40(1):27-67. doi: 10.1080/02786820500421521
    [2] 李红红.航空发动机二维模型燃烧室中碳黑颗粒生成数值模拟[D].南京: 南京航空航天大学, 2008: 1-3.

    LI H H.Research on numerical simulation of soot formation in a 2-D simplified gas turbine combustor[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2008: 1-3(in Chinese).
    [3] 张群杰.航空发动机燃烧室中辐射换热的数值研究[D].沈阳: 沈阳航空航天大学, 2012: 1-3.

    ZHANG Q J.Numerical study of radiative transfer in areo-engine combustor[D].Shenyang: Shenyang Aerospace University, 2012: 1-3(in Chinese).
    [4] RAMANATHAN V, CARMICHAEL G.Global and regional climate changes due to black carbon[J].Nature Geoscience, 2008, 1(4):335-358. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_f243140c24b6d28521e577aaff647772
    [5] GRAHAM T J, SCHLESINGER R B.Cardiovascular health and particulate vehicular emissions:A critical evaluation of the evidence[J].Air Quality Atmosphere & Health, 2010, 3(1):3-27. doi: 10.1007-s11869-009-0047-x/
    [6] LUO J, ZHANG Y, ZHANG Q, et al.Sensitivity analysis of morphology on radiative properties of soot aerosols[J].Optics Express, 2018, 26(10):A420. doi: 10.1364/OE.26.00A420
    [7] SORENSEN C M, CAI J, LU N.Light-scattering measurements of monomer size, monomers per aggregate, and fractal dimension for soot aggregates in flames[J].Applied Optics, 1992, 31(30):6547-6557. doi: 10.1364/AO.31.006547
    [8] IYER S S, LITZINGER T A, LEE S Y, et al.Determination of soot scattering coefficient from extinction and three-angle scattering in a laminar diffusion flame[J].Combustion & Flame, 2007, 149(1-2):206-216. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0c896fa013cb31c0098636928c0436d1
    [9] LINK O, SNELLING D R, THOMSON K A, et al.Development of absolute intensity multi-angle light scattering for the determination of polydisperse soot aggregate properties[J].Proceedings of the Combustion Institute, 2011, 33(1):847-854. https://www.sciencedirect.com/science/article/pii/S154074891000129X
    [10] AMIN H M F, ROBERTS W L.Soot measurements by two angle scattering and extinction in an N2-diluted ethylene/air counterflow diffusion flame from 2 to 5 atm[J].Proceedings of the Combustion Institute, 2016, 36(1):861-869.
    [11] MOGHADDAM S T, HADWIN P J, DAUN K J.Soot aggregate sizing through multiangle elastic light scattering:Influence of model error[J].Journal of Aerosol Science, 2017, 111:36-50. doi: 10.1016/j.jaerosci.2017.06.003
    [12] SORENSEN C M.Light scattering by fractal aggregates:A review[J].Aerosol Science and Technology, 2001, 35(2):648-687. doi: 10.1080/02786820117868
    [13] MISHCHENKO M I, TRAVIS L D, LACIS A A.Scattering, absorption, and emission of light by small particles[M].Cambridge:Cambridge University Press, 2002:101-442.
    [14] OLTMANN H, REIMANN J, WILL S.Wide-angle light scattering (WALS) for soot aggregate characterization[J].Combustion & Flame, 2010, 157(3):516-522.
    [15] OLTMANN H, REIMANN J, WILL S.Single-shot measurement of soot aggregate sizes by wide-angle light scattering (WALS)[J].Applied Physics B, 2012, 106(1):171-183. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c78e9710b5f7531543ab15cc954b42f5
    [16] HANSEN N.The CMA evolution strategy: A tutorial[EB/OL].(2016-04-04)[2019-06-20].http://arxiv.org/abs/1604.00772.
    [17] DALZELL W H, SAROFIM A F.Optical constants of soot and their application to heat-flux calculations[J].Journal of Heat Transfer, 1969, 91(1):100-104. doi: 10.1115/1.3580063
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  688
  • HTML全文浏览量:  170
  • PDF下载量:  120
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-28
  • 录用日期:  2019-08-14
  • 网络出版日期:  2020-05-20

目录

    /

    返回文章
    返回
    常见问答