留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非线性多目标概率约束规划免疫优化算法

张仁崇 张著洪

张仁崇, 张著洪. 非线性多目标概率约束规划免疫优化算法[J]. 北京航空航天大学学报, 2020, 46(5): 900-914. doi: 10.13700/j.bh.1001-5965.2019.0350
引用本文: 张仁崇, 张著洪. 非线性多目标概率约束规划免疫优化算法[J]. 北京航空航天大学学报, 2020, 46(5): 900-914. doi: 10.13700/j.bh.1001-5965.2019.0350
ZHANG Renchong, ZHANG Zhuhong. Immune optimization algorithm for nonlinear multi-objective probabilistic constrained programming[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(5): 900-914. doi: 10.13700/j.bh.1001-5965.2019.0350(in Chinese)
Citation: ZHANG Renchong, ZHANG Zhuhong. Immune optimization algorithm for nonlinear multi-objective probabilistic constrained programming[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(5): 900-914. doi: 10.13700/j.bh.1001-5965.2019.0350(in Chinese)

非线性多目标概率约束规划免疫优化算法

doi: 10.13700/j.bh.1001-5965.2019.0350
基金项目: 

国家自然科学基金 61563009)

贵州省教育厅青年科技人才成长项目 QJH KY Zi[2018] No.276

贵州省大数据应用工程研究中心 QJH KY Zi[2017] No.022

详细信息
    作者简介:

    张仁崇  男, 硕士, 助教。主要研究方向:智能优化算法

    张著洪  男, 教授, 博士, 博士生导师。主要研究方向:控制理论与计算智能

    通讯作者:

    张著洪, E-mail: zhzhang@gzu.edu.cn

  • 中图分类号: TP301.6

Immune optimization algorithm for nonlinear multi-objective probabilistic constrained programming

Funds: 

National Natural Science Foundation of China 61563009)

Youth Science and Technology Talent Development Project of Education Department in Guizhou Province QJH KY Zi[2018] No.276

Guizhou Big Data Application Engineering Research Center in Guizhou Province QJH KY Zi[2017] No.022

More Information
  • 摘要:

    针对噪声信息未知的一般非线性多目标概率约束规划(MOPCP)问题,探讨基于危险理论的多目标免疫优化算法(MOIOA)。算法设计中,借助自适应采样方法估计机会约束的概率和目标值;借助危险理论蕴含的应答模式分割进化种群为已感染、易感染和未感染子群;借助二进制交叉、自适应变异概率、多项式变异策略平衡种群的全局与局部搜索能力。与7种算法相比较获得的数值结果表明,所提算法的搜索效率有明显优势且搜索效果有一定的优越性,同时对复杂工程问题有应用潜力。

     

  • 图 1  MOIOA的流程图

    Figure 1.  Flowchart of MOIOA

    图 2  问题1的非支配面比较与CD、CS值的箱线图比较

    Figure 2.  Comparison of Pareto fronts and comparison of box plots on CD and CS for Problem 1

    图 3  问题2的非支配面比较与CD、CS值的箱线图比较

    Figure 3.  Comparison of Pareto fronts and comparison of box plots on CD and CS for Problem 2

    图 4  问题3的非支配面与CD、CS值的箱线图比较

    Figure 4.  Comparison of Pareto fronts and comparison of box plots on CD and CS for Problem 3

    图 5  问题4的非支配面与CD、CS值的箱线图比较

    Figure 5.  Comparison of Pareto fronts and comparison of box plots on CD and CS for Problem 4

    图 6  MOIOA的不同参数设置及统计结果比较

    Figure 6.  Different parameter settings of MOIOA and comparison of statistical results

    表  1  不同算法在α=0.9下求解问题1获得的统计结果比较

    Table  1.   Comparison of statistical results of different algorithms for Problem 1 with α = 0.9

    算法CR均值/%CD均值CS均值
    IAE
    均值/
    10-3
    FR
    均值/
    %
    AR
    均值/
    s
    AgMOPSOMOEA/DDCMIGANNIAMOPSONSGA-ⅡSPEA-ⅡMOIOA
    AgMOPSO014.6916.4714.2920.4915.6715.8918.680.0311.945.5963.3219.82
    MOEA/DD14.99016.7314.4420.6114.3815.7218.140.0311.944.0569.349.24
    CMIGA16.1017.18015.6621.0215.6015.6020.690.0271.963.9870.8315.02
    NNIA13.2714.1315.40019.8313.5612.7717.610.0321.825.8259.5011.13
    MOPSO12.6413.9214.1112.69013.2812.4917.570.0261.913.9071.968.63
    NSGA-Ⅱ14.2115.4115.8914.8121.20014.2719.680.0311.954.8264.738.73
    SPEA-Ⅱ13.8614.7816.5514.7120.3814.11020.000.0271.894.0368.739.38
    MOIOA14.4614.7815.2912.0520.3513.4414.2400.0211.942.3380.211.22
    下载: 导出CSV

    表  2  不同算法在α=0.9下求解问题2获得的统计结果比较

    Table  2.   Comparison of statistical results of different algorithms for Problem 2 with α=0.9

    算法CR均值/%CD均值CS均值
    IAE
    均值/
    10-5
    FR
    均值/
    %
    AR
    均值/
    s
    AgMOPSOMOEA/DDCMIGANNIAMOPSONSGA-ⅡSPEA-ⅡMOIOA
    AgMOPSO011.7712.999.0912.8913.0124.379.071.92241.730.3999.9620.31
    MOEA/DD3.51010.947.0811.5111.2221.447.014.60206.700.3399.9811.35
    CMIGA4.8510.2207.5510.2710.6921.017.171.86237.760.4899.9817.44
    NNIA4.8710.9711.22010.8511.0821.797.621.86241.210.8499.9412.36
    MOPSO2.769.378.635.8009.0917.095.763.30192.670.3099.9611.24
    NSGA-Ⅱ4.499.599.947.3910.17019.387.941.91241.740.3899.9611.19
    SPEA-Ⅱ2.668.077.144.737.937.8304.782.93234.860.5599.9811.30
    MOIOA4.8910.7511.307.9611.0211.4022.3501.79239.5501001.80
    下载: 导出CSV

    表  3  不同算法在α=0.6下求解问题3获得的统计结果比较

    Table  3.   Comparison of statistical results of different algorithms for Problem 3 with α=0.6

    算法CR均值/%CD均值CS均值
    IAE
    均值/
    10-4
    FR
    均值/
    %
    AR
    均值/
    s
    AgMOPSOMOEA/DDCMIGANNIAMOPSONSGA-ⅡSPEA-ⅡMOIOA
    AgMOPSO015.618.5418.3934.8218.9121.8917.390.3213.226.6196.0726.04
    MOEA/DD24.4109.3921.0240.1121.3325.7021.820.3711.264.5097.4612.20
    CMIGA39.4030.80034.6458.9335.4341.3333.280.4613.541.7098.8020.26
    NNIA25.4618.2310.43042.5921.8027.9722.050.2412.065.3996.8715.19
    MOPSO12.657.732.758.5708.9011.1510.120.3312.494.8097.7211.84
    NSGA-Ⅱ25.3817.639.6121.2541.64026.4921.430.2912.254.6597.2811.68
    SPEA-Ⅱ20.3214.285.9717.1434.8216.37016.950.3612.175.0997.0212.69
    MOIOA27.4820.0211.0623.0342.7723.8929.0800.3112.362.1898.582.48
    下载: 导出CSV

    表  4  不同算法在α=0.9下求解问题4获得的统计结果比较

    Table  4.   Comparison of statistical results of different algorithms for Problem 4 with α=0.9

    算法CR均值/%CD均值CS均值
    IAE
    均值/
    10-3
    FR
    均值/
    %
    AR
    均值/
    s
    AgMOPSOMOEA/DDCMIGANNIAMOPSONSGA-ⅡSPEA-ⅡMOIOA
    AgMOPSO025.9521.4736.5136.9332.8032.8418.102.8214.944.3271.4619.07
    MOEA/DD21.79021.6635.1136.6930.2031.5217.442.9913.280.7292.358.89
    CMIGA25.3632.19044.9840.9934.2737.2721.842.6914.300.6390.1815.34
    NNIA13.8922.3113.93023.9020.8820.6010.411.508.511.1389.4210.69
    MOPSO11.4216.6211.9727.90022.4722.9011.811.859.331.3886.038.83
    NSGA-Ⅱ16.5821.0415.6932.4030.78024.9215.612.7714.840.7092.619.01
    SPEA-Ⅱ16.0020.5818.0734.2532.2228.31015.071.6610.700.9490.159.68
    MOIOA29.5036.6230.4549.0445.9341.0640.7403.7820.120.8090.041.30
    下载: 导出CSV
  • [1] 李晓娜.不确定环境下城市需水量预测及多水源联合供水调度研究[D].邯郸: 河北工程大学, 2018. http://cdmd.cnki.com.cn/Article/CDMD-10076-1018036022.htm

    LI X N.Study on urban water demand forecast and multiple water sources optimization allocation under uncertainty[D].Handan: Hebei University of Engineering, 2018(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10076-1018036022.htm
    [2] 张铭鑫, 张玺, 彭建刚, 等.不确定环境下再制造加工车间多目标调度优化方法[J].合肥工业大学学报(自然科学版), 2016, 39(4):433-439. doi: 10.3969/j.issn.1003-5060.2016.04.001

    ZHANG M X, ZHANG X, PENG J G, et al.Multi-objective optimization method of remanufacturing processing workshop scheduling under uncertain conditions[J].Journal of Hefei University of Technology(Natural Science), 2016, 39(4):433-439(in Chinese). doi: 10.3969/j.issn.1003-5060.2016.04.001
    [3] 谢仕炜, 胡志坚, 宁月.考虑最优负荷削减方向的电网多目标分层随机机会约束规划[J].电力自动化设备, 2017, 37(8):35-42. http://d.old.wanfangdata.com.cn/Periodical/dlzdhsb201708006

    XIE S W, HU Z J, NING Y.Multi-objective hierarchical stochastic chance-constrained programming considering optimal load-shedding direction[J].Electric Power Automation Equipment, 2017, 37(8):35-42(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/dlzdhsb201708006
    [4] LIU X J, ZHANG M M, SU H, et al.A multi-objective chance-constrained programming approach for uncertainty-based optimal nutrients load reduction at the Watershed Scale[J].Water, 2017, 9(5):322. doi: 10.3390/w9050322
    [5] 李整.基于粒子群优化算法的机组组合问题的研究[D].北京: 华北电力大学(北京), 2016. http://cdmd.cnki.com.cn/Article/CDMD-11412-1016270824.htm

    LI Z.Unit commitment via particle swarm optimization algorithm[D].Beijing: North China Electric Power University(Beijing), 2016(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-11412-1016270824.htm
    [6] QIN X S, HUANG G H, LIU L.A genetic-algorithm-aided stochastic optimization model for regional air quality management under uncertainty[J].Air Repair, 2010, 60(1):63. doi: 10.3155/1047-3289.60.1.63
    [7] BISWAL M P, BISWAL N P, LI D.Probabilistic linear programming problems with exponential random variables:A technical note[J].European Journal of Operational Research, 1998, 111(3):589-597. doi: 10.1016/S0377-2217(97)90319-2
    [8] GOICOECHEA A, DUCKSTEIN L.Nonnormal deterministic equivalents and a transformation in stochastic mathematical programming[J].Applied Mathematics & Computation, 1987, 21(1):51-72. doi: 10.1023/B:EARE.0000017275.44350.e5
    [9] 韩其恒, 唐万生, 李光泉.机会约束下的投资问题[J].系统工程学报, 2002, 17(1):87-92. doi: 10.3969/j.issn.1000-5781.2002.01.017

    HAN Q H, TANG W S, LI G Q.Chance-constrained portfolio problem[J].Journal of Systems Engineering, 2002, 17(1):87-92(in Chinese). doi: 10.3969/j.issn.1000-5781.2002.01.017
    [10] AĞPAK K, GÖKCEN H.A chance-constrained approach to stochastic line balancing problem[J].European Journal of Operational Research, 2007, 180(3):1098-1115. doi: 10.1016/j.ejor.2006.04.042
    [11] HESTERBERG T.Weighted average importance sampling and defensive mixture distributions[J].Technometrics, 1995, 37(2):185-194. doi: 10.1080/00401706.1995.10484303
    [12] LOUGHLIN D H, RANJITHAN S R.Chance-constrained genetic algorithms[C]//Proceedings of Genetic and Evolutionary Computation Conference.San Francisco: Morgan Kaufmann Publishers Inc., 1999: 369-376.
    [13] ZHANG Z H.Noisy immune optimization for chance-constrained programming problems[J].Applied Mechanics and Materials, 2011, 48:740-744. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.4028/www.scientific.net/AMM.48-49.740
    [14] YANG K, ZHANG Z H, LU J X.Adaptive racing ranking-based immune optimization approach solving multi-objective expected value programming[J].Soft Computing, 2018, 22(7):2139-2158. doi: 10.1007/s00500-016-2467-5
    [15] ZHANG Z H, WANG L, LIAO M.Adaptive sampling immune algorithm solving joint chance-constrained programming[J].Journal of Control Theory and Applications, 2013, 11(2):237-246. doi: 10.1007/s11768-013-1186-z
    [16] YANG K, ZHANG Z H.Adaptive sampling detection based immune optimization approach and its application to chance constrained programming[M]//SUN H, YANG C Y, LIIN C W, et al.Genetic and evolutionary computing.Berlin: Springer, 2015: 19-28.
    [17] ZHANG Z H, YANG K, ZHANG D M.Sample bound estimate based chance-constrained immune optimization and its applications[J].International Journal of Automation and Computing, 2016, 13(5):468-479. doi: 10.1007/s11633-016-0997-z
    [18] 张国新, 王瑜, 沈田双.空降地面作战突破点决策模型[J].火力与指挥控制, 2010, 35(11):54-57. doi: 10.3969/j.issn.1002-0640.2010.11.016

    ZHANG G X, WANG Y, SHEN T S.A study on breakthrough point decision model of airborne ground operation[J].Fire Control & Command Control, 2010, 35(11):54-57(in Chinese). doi: 10.3969/j.issn.1002-0640.2010.11.016
    [19] XU J P, DING C.A class of chance constrained multiobjective linear programming with birandom coefficients and its application to vendors selection[J].International Journal of Production Economics, 2011, 131(2):709-720. doi: 10.1016/j.ijpe.2011.02.020
    [20] 白牧可, 唐巍, 张璐, 等.基于机会约束规划的DG与配电网架多目标协调规划[J].电工技术学报, 2013, 28(10):346-354. doi: 10.3969/j.issn.1000-6753.2013.10.041

    BAI M K, TANG W, ZHANG L, et al.Multi-objective coordinated planning of distribution network incorporating distributed generation based on chance constrained programming[J].Transactions of China Electrotechnical Society, 2013, 28(10):346-354(in Chinese). doi: 10.3969/j.issn.1000-6753.2013.10.041
    [21] DU H, MA H, LI X.Fuzzy bi-objective chance-constrained programming model for timetable optimization of a bus route[C]//UK Workshop on Computational Intelligence.Berlin: Springer, 2017: 312-324.
    [22] 刘文学, 梁军, 负志皓, 等.基于可信理论的多目标模糊机会约束无功优化[J].电工技术学报, 2015, 30(21):82-89. doi: 10.3969/j.issn.1000-6753.2015.21.010

    LIU W X, LIANG J, FU Z H, et al.Multi-objective chance constrained optimal reactive power flow based on credibility theory[J].Transactions of China Electrotechnical Society, 2015, 30(21):82-89(in Chinese). doi: 10.3969/j.issn.1000-6753.2015.21.010
    [23] 裴文杰, 汪沨, 谭阳红, 等.含光伏分布式电源配电网的电动汽车充电站机会约束规划[J].电力系统及其自动化学报, 2017, 29(6):45-52. doi: 10.3969/j.issn.1003-8930.2017.06.007

    PEI W J, WANG F, TAN Y H, et al.Chance-constrained programming for electric vehicle charging stations in distribution network containing photovoltaic distributed generations[J].Proceedings of the CSU-EPSA, 2017, 29(6):45-52(in Chinese). doi: 10.3969/j.issn.1003-8930.2017.06.007
    [24] VIRIVINTI N, MITRA K.Intuitionistic fuzzy chance constrained programming for handling parametric uncertainty:An industrial grinding case study[J].Industrial & Engineering Chemistry Research, 2015, 54(24):6291-6304. doi: 10.1021/ie504109v
    [25] MEHLAWAT M K, GUPTA P.COTS products selection using fuzzy chance-constrained multiobjective programming[J].Applied Intelligence, 2015, 43(4):732-751. doi: 10.1007/s10489-015-0673-y
    [26] TIMMIS J, HONE A, STIBOR T, et al.Theoretical advances in artificial immune systems[J].Theoretical Computer Science, 2008, 403(1):11-32. doi: 10.1016/j.tcs.2008.02.011
    [27] GONG M, JIAO L, DU H, et al.Multiobjective immune algorithm with nondominated neighbor-based selection[J].Evolutionary Computation, 2008, 16(2):225-255. doi: 10.1162/evco.2008.16.2.225
    [28] MARTINEZ- PENALOZA M, MEZURA-MONTES E.Immune generalized differential evolution for dynamic multi-objective environments:An empirical study[J].Knowledge-Based Systems, 2018, 142:192-219. doi: 10.1016/j.knosys.2017.11.037
    [29] XIA X, ZHOU Y.On the effectiveness of immune inspired mutation operators in some discrete optimization problems[J].Information Sciences, 2018, 426:87-100. doi: 10.1016/j.ins.2017.10.038
    [30] SALMON H M, DE FARIASB C M, LOUREIRO P, et al.Intrusion detection system for wireless sensor networks using danger theory immune-inspired techniques[J].International Journal of Wireless Information Networks, 2013, 20(1):39-66. doi: 10.1007/s10776-012-0179-z
    [31] XU Q Y.Collision avoidance strategy optimization based on danger immune algorithm[J].Computers & Industrial Engineering, 2014, 76:268-279. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b148acf8f1163d70b319abf7eacdd9ac
    [32] ZHANG Z H, YUE S G, LIAO M, et al.Danger theory based artificial immune system solving dynamic constrained single-objective optimization[J].Soft Computing, 2014, 18(1):185-206. doi: 10.1007/s00500-013-1048-0
    [33] ZHANG Z H, WANG L, LONG F.Immune optimization approach solving multi-objective chance-constrained programming[J].Evolving Systems, 2013, 6(1):41-53. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0234375333/
    [34] ZHANG Z H, TU X.Probabilistic dominance-based multi-objective immune optimization algorithm in noisy environments[J].Journal of Computational and Theoretical Nanoscience, 2007, 4(7):1380-1387. doi: 10.1166/jctn.2007.2428
    [35] LIU B D.Theory and practice of uncertain programming[M].2nd ed.Berlin:Springer, 2009:50-53.
    [36] MATZINGER P. Tolerance, danger, and the extended family[J].Annual Review of Immunology, 1994, 12(1):991-1045. doi: 10.1146/annurev.iy.12.040194.005015
    [37] LIN Q Z, CHEN J Y, ZHAN Z H, et al.A hybrid evolutionary immune algorithm for multiobjective optimization problems[J].IEEE Transactions on Evolutionary Computation, 2016, 20(5):711-729. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=25089d928695dde5ccf77091c1587d65
    [38] DEB K, PRATAP A, AGARWAL S, et al.A fast and elitist multiobjective genetic algorithm:NSGA-Ⅱ[J].IEEE Transactions on Evolutionary Computation, 2002, 6(2):182-197. doi: 10.1109/4235.996017
    [39] ZHU Q L, LIN Q Z, CHEN W N, et al.An external archive-guided multiobjective particle swarm optimization algorithm[J].IEEE Transactions on Cybernetics, 2017, 47(9):2794-2808. doi: 10.1109/TCYB.2017.2710133
    [40] LI K, DEB K, ZHANG Q F, et al.An evolutionary many-objective optimization algorithm based on dominance and decomposition[J].IEEE Transactions on Evolutionary Computation, 2015, 19(5):694-716. doi: 10.1109/TEVC.2014.2373386
    [41] QIAN S Q, YE Y Q, JIANG B, et al.Constrained multiobjective optimization algorithm based on immune system model[J].IEEE Transactions on Cybernetics, 2016, 46(9):2056-2069. doi: 10.1109/TCYB.2015.2461651
    [42] COELLO C A C, PULIDO G T, LECHUGA M S.Handling multiple objectives with particle swarm optimization[J].IEEE Transactions on Evolutionary Computation, 2004, 8(3):256-279. doi: 10.1109/TEVC.2004.826067
    [43] ZITZLER E, LAUMANNS M, THIELE L.SPEA2: Improving the strength Pareto evolutionary algorithm[C]//Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems.Berlin: Springer, 2002: 95-100.
    [44] POOJARI C A, VARGHESE B.Genetic algorithm based technique for solving chance constrained problems[J].European Journal of Operational Research, 2008, 185(3):1128-1154. doi: 10.1016/j.ejor.2006.06.045
    [45] 张著洪, 黄席樾.一种新的免疫算法及其在多模态函数优化中的应用[J].控制理论与应用, 2004(1):17-21. doi: 10.3969/j.issn.1000-8152.2004.01.006

    ZHANG Z H, HUANG X Y.Novel immue algorithm and its application to multi-modal function optimization[J].Control Theory & Applications, 2004(1):17-21(in Chinese). doi: 10.3969/j.issn.1000-8152.2004.01.006
    [46] DE CASTRO L N, VON ZUBEN F J.The clonal selection algorithm with engineering applications[C]//Proceedings of Genetic and Evolutionary Computation Conference.San Fransisco: Morgan Kaufman Publisher Inc., 2000: 36-37.
    [47] DEB K. Constrained multi-objective evolutionary algorithm[M]//BANSAL J C, SINGH P K, PAL N R.Evolutionary and swarm intelligence.Berlin: Springer, 2019: 85-118.
    [48] SADOLLAH A, ESKANDAR H, KIM J H.Water cycle algorithm for solving constrained multi-objective optimization problems[J].Applied Soft Computing, 2015, 27:279-298. doi: 10.1016/j.asoc.2014.10.042
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  779
  • HTML全文浏览量:  185
  • PDF下载量:  489
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-03
  • 录用日期:  2019-09-27
  • 网络出版日期:  2020-05-20

目录

    /

    返回文章
    返回
    常见问答