-
摘要:
在空中交通管理中,识别空中交通复杂性是一项重要工作。目前的算法多采用飞机密度、机群、滞留程度等宏观指标对复杂性进行评价。利用复杂网络理论描述空中交通状况,将空域中的飞机视为节点,飞机与飞机之间距离小于彼此的机载防撞系统(ACAS)通信距离时开始构成连边,以此构建飞行状态复杂网络模型,可以更好地描述网络内部的微观特征。选取环边数、节点强度、平均聚类系数、介数中心性和网络效率等拓扑特性指标,对动态空中交通状况进行了研究。在此基础上,采用独立主元分析(ICA)在线识别空中交通复杂性,将交通顺畅的情况作为训练数据集进行处理,根据SPE统计量、
I 2统计量和I e2统计量的变化来识别复杂性情况。仿真结果表明,所提方法可以较好地识别空中交通复杂性。-
关键词:
- 空中交通复杂性 /
- 交通拥堵识别 /
- 复杂网络 /
- 独立主元分析(ICA) /
- 空中交通管理
Abstract:Identifying the complexity of air traffic is an important task in air traffic management. Most current algorithms are usually tested using some macro-indexes, such as aircraft density, aircraft clusters, stranded degree, and so on. In this paper, the air traffic situation is described from the perspective of complex networks: aircraft in airspace are regarded as nodes and edges form within Airborne Collision Avoidance System (ACAS) communication ranges. The dynamic air traffic situation is studied by selecting topological characteristic indexes such as loop numbers, node strength, average clustering coefficient, betweenness centrality and network efficiency. On this basis, Independent Component Analysis (ICA) is used to recognize air traffic complexity online and treat the smooth traffic as a training data set. The congestion is recognized according to the changes of SPE-statistic,
I 2-statistic andI e2-statistic. The simulation results show that the proposed method has the ability to identify air traffic complexity well. -
表 1 部分训练样本拓扑指标值
Table 1. Some topological indicator values of training samples
样本序号 LN NS CC BC NE 1 53 9.754 6 0.813 4 0.021 9 40.125 0 2 41 9.145 8 0.827 4 0.029 3 20.569 4 3 60 10.883 2 0.842 7 0.012 9 35.411 3 4 42 8.433 9 0.775 3 0.034 5 20.882 2 5 59 11.977 7 0.852 3 0.015 4 24.790 2 6 52 9.567 7 0.817 6 0.021 1 27.105 3 7 50 9.617 3 0.803 6 0.022 8 31.494 1 8 20 11.570 1 0.723 4 0.029 2 21.478 3 9 41 7.796 3 0.813 3 0.031 0 19.480 9 ┇ ┇ ┇ ┇ ┇ ┇ 50 60 14.536 2 0.855 2 0.013 9 24.163 0 表 2 监测样本拓扑指标值和SPE、I2和Ie2统计值
Table 2. Topological indicator values of monitoring samples and statistic values of SPE, I2 and Ie2
时刻序号 时刻 LN NS CC BC NE SPE I2 Ie2 1 15:40:43 207 23.681 4 0.934 6 0.001 3 185 983 7.467 1×10-29 21.867 4 3.464 4 2 15:45:43 122 24.009 2 0.964 0 0.001 0 145.370 9 5.218 6×10-29 16.758 3 4.589 4 3 15:50:43 65 18.026 1 0.951 9 0.003 5 43.537 8 3.921 4×10-29 14.541 3 1.976 5 4 15:55:44 44 18 223 0.894 1 0.013 5 65.336 2 3.676 3×10-29 13.287 6 5.875 4 5 16:00:43 33 8.149 0 0.884 7 0.010 1 46.486 1 9.812 5×10-30 6.221 8 2.664 7 6 16:05:43 39 10.791 1 0.892 8 0.019 4 41.822 5 1.581 9×10-29 7.543 9 2.545 2 表 3 文献[19]中K-mean算法对相同样本的复杂性识别结果
Table 3. Complexity recognition results of K-mean algorithm for the same sample in Ref.[19]
时刻序号 时刻 N E1, 1 C1, 1 E1, 2 C1, 2 E2, 1 C2, 1 E2, 2 C2, 2 等级 1 15:40:43 24 87 0.934 6 71 0.923 8 66 0.954 7 72 0.955 8 高 2 15:45:43 18 72 0.964 0 81 0.962 7 45 0.943 1 64 0.942 5 高 3 15:50:43 14 66 0.931 9 51 0.925 4 41 0.922 1 35 0.927 6 低 4 15:55:44 13 58 0.914 1 52 0.912 4 45 0.935 0 33 0.898 8 中 5 16:00:43 11 35 0.884 7 34 0.882 1 18 0.884 6 16 0.885 6 低 6 16:05:43 12 41 0.892 8 40 0.881 7 23 0.883 2 25 0.853 0 低 -
[1] ADAM R, JACEK S.The concept of initial air traffic situation assessment as a stage of medium-term conflict detection[J].Procedia Engineering, 2017, 187:420-424. doi: 10.1016/j.proeng.2017.04.395 [2] PRANDINI M, PUTTA V, HU J H.A probabilistic measure of air traffic complexity in 3-D airspace[J].International Journal of Adaptive Control and Signal Processing, 2010, 24(10):813-829. doi: 10.1002/acs.1192 [3] 张进, 胡明华, 张晨.空中交通管理中的复杂性研究[J].航空学报, 2009, 30(11):2132-2142. http://d.old.wanfangdata.com.cn/Periodical/hkxb200911019ZHANG J, HU M H, ZHANG C.Complexity research in air traffic management[J].Acta Aeronautica et Astronautica Sinica, 2009, 30(11):2132-2142(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb200911019 [4] 张晨, 胡明华, 张进, 等.基于交通复杂性的扇区资源管理[J].南京航空航天大学学报, 2010, 42(5):607-613. http://d.old.wanfangdata.com.cn/Periodical/njhkht201005013ZHANG C, HU M H, ZHANG J, et al.Sector asset management based on air traffic complexity[J].Journal of Nanjing University of Aeronautics & Astronautics, 2010, 42(5):607-613(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/njhkht201005013 [5] CHEN X W, STEVEN J L, SHIMON Y N.A framework of enroute air traffic conflict detection and resolution through complex network analysis[J].Computer in Industry, 2011, 62:787-794. doi: 10.1016/j.compind.2011.05.006 [6] WANG H Y, WEN R Y, ZHAO Y F.Analysis of topological characteristic in air traffic situation networks[J].Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2015, 229(13):2497-2505. doi: 10.1177/0954410015578482 [7] WANG H Y, XU X H, ZHAO Y F.Empirical analysis of aircraft clusters in air traffic situation networks[J].Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering 2017, 231(9): 1718-1731. doi: 10.1177/0954410016660870 [8] ZANIN M.Network analysis reveals patterns behind air safety events [J].Physica A:Statistical Mechanics and Its Applications, 2014, 401:201-206. doi: 10.1016/j.physa.2014.01.032 [9] HYVARNEN A, OJA E.A fast fixed-point algorithm for independent component analysis[J].Neural Computation, 1997, 9:1483-1492. doi: 10.1162/neco.1997.9.7.1483 [10] HYVARNEN A, OJA E.Independent component analysis:Algorithms and applications[J].Neural Networks, 2000, 13(4-5):411-430. doi: 10.1016/S0893-6080(00)00026-5 [11] LEE J M, YOO C K, LEE I B.Statistical process monitoring with independent component analysis[J].Journal of Process Control, 2004, 14(5):467-485. doi: 10.1016/j.jprocont.2003.09.004 [12] TANG J J, WANG Y H, LIU F.Characterizing traffic time series based on complex network theory[J].Physica A:Statistical Mechanics and Its Applications, 2013, 392:4192-4201. doi: 10.1016/j.physa.2013.05.012 [13] TARJAN R.Depth-first search and linear graph algorithms[C]//Symposium on Switching & Automata Theory.Piscataway: IEEE Press, 1971: 114-121. [14] FREEMAN L C.A set of measures of centrality based on betweenness[J].Sociometry, 1997, 40(1):35-41. doi: 10.2307-3033543/ [15] WANG X Y, LI J Q.Detecting communities by the core-vertex and intimate degree in complex networks[J].Physica A:Statistical Mechanics and Its Applications, 2013, 392:2555-2563. doi: 10.1016/j.physa.2013.01.039 [16] WANG X Y, CAO J Y, LI R, et al.A preferential attachment strategy for connectivity link addition strategy in improving the robustness of interdependent networks[J].Physica A:Statistical Mechanics and Its Applications, 2017, 483:412-422. doi: 10.1016/j.physa.2017.04.128 [17] PATERA R P.Space vehicle conflict probability for ellipsoidal conflict volumes[J].Journal of Guidance, Control, and Dynamics, 2007, 30(6):1818-1821. http://www.researchgate.net/publication/245433462_space_vehicle_conflict_probability_for_ellipsoidal_conflict_volumes [18] SIMOGLOU A, MARTIN E B, MORRIS A J.Statistical performance monitoring of dynamic multivariate processes using state space modelling[J].Computers & Chemical Engineering, 2002, 26(6):909-920. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ac86c9713ac3874a7c8c3a2704b2b5ab [19] WANG H, SONG Z, WEN R, et al.Study on evolution characteristics of air traffic situation complexity based on complex network theory[J].Aerospace Science and Technology, 2016, 58:518-528. doi: 10.1016/j.ast.2016.09.016