留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于复杂网络的空中交通复杂性识别方法

吴明功 叶泽龙 温祥西 蒋旭瑞

吴明功, 叶泽龙, 温祥西, 等 . 基于复杂网络的空中交通复杂性识别方法[J]. 北京航空航天大学学报, 2020, 46(5): 839-850. doi: 10.13700/j.bh.1001-5965.2019.0354
引用本文: 吴明功, 叶泽龙, 温祥西, 等 . 基于复杂网络的空中交通复杂性识别方法[J]. 北京航空航天大学学报, 2020, 46(5): 839-850. doi: 10.13700/j.bh.1001-5965.2019.0354
WU Minggong, YE Zelong, WEN Xiangxi, et al. Air traffic complexity recognition method based on complex networks[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(5): 839-850. doi: 10.13700/j.bh.1001-5965.2019.0354(in Chinese)
Citation: WU Minggong, YE Zelong, WEN Xiangxi, et al. Air traffic complexity recognition method based on complex networks[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(5): 839-850. doi: 10.13700/j.bh.1001-5965.2019.0354(in Chinese)

基于复杂网络的空中交通复杂性识别方法

doi: 10.13700/j.bh.1001-5965.2019.0354
基金项目: 

国家自然科学基金 71801221

陕西省自然科学研究计划 2018JQ7004

详细信息
    作者简介:

    吴明功  男, 硕士, 教授, 硕士生导师。主要研究方向:空中交通管理、管制指挥与安全

    叶泽龙  男, 硕士研究生。主要研究方向:空中交通管制指挥与安全

    温祥西  男, 博士, 讲师。主要研究方向:空管自动化技术

    蒋旭瑞  男, 硕士研究生。主要研究方向:冲突探测与解脱技术

    通讯作者:

    温祥西, E-mail: wxxajy@163.com

  • 中图分类号: V355

Air traffic complexity recognition method based on complex networks

Funds: 

National Natural Science Foundation of China 71801221

Shaanxi Province Natural Science Research Plan 2018JQ7004

More Information
  • 摘要:

    在空中交通管理中,识别空中交通复杂性是一项重要工作。目前的算法多采用飞机密度、机群、滞留程度等宏观指标对复杂性进行评价。利用复杂网络理论描述空中交通状况,将空域中的飞机视为节点,飞机与飞机之间距离小于彼此的机载防撞系统(ACAS)通信距离时开始构成连边,以此构建飞行状态复杂网络模型,可以更好地描述网络内部的微观特征。选取环边数、节点强度、平均聚类系数、介数中心性和网络效率等拓扑特性指标,对动态空中交通状况进行了研究。在此基础上,采用独立主元分析(ICA)在线识别空中交通复杂性,将交通顺畅的情况作为训练数据集进行处理,根据SPE统计量、I2统计量和Ie2统计量的变化来识别复杂性情况。仿真结果表明,所提方法可以较好地识别空中交通复杂性。

     

  • 图 1  飞行状态网络结构差异性

    Figure 1.  Difference of flight state network structures

    图 2  边权设置

    Figure 2.  Edge weight setting

    图 3  本文方法主要流程

    Figure 3.  Main flow of proposed method

    图 4  网络结构随节点数增多的变化情况

    Figure 4.  Variation of network structure with increase of node number

    图 5  相同节点数不同分布时网络结构的差异

    Figure 5.  Difference of network structure with the same node number but different distribution of nodes

    图 6  监测图(均匀分布且节点数为50)

    Figure 6.  Monitoring charts (uniformly distributed and node number equals to 50)

    图 7  变量对偏差的贡献

    Figure 7.  Contribution of variables to deviation

    图 8  不同节点数和分布时的监测图

    Figure 8.  Monitoring charts with different node number and distribution

    图 9  进近阶段不同时刻雷达屏幕截图

    Figure 9.  Radar screenshots at different moments in phase of approaching

    图 10  进近阶段不同时刻离散子网络

    Figure 10.  Discrete sub-network structures at different moments in phase of approaching

    表  1  部分训练样本拓扑指标值

    Table  1.   Some topological indicator values of training samples

    样本序号LNNSCCBCNE
    1539.754 60.813 40.021 940.125 0
    2419.145 80.827 40.029 320.569 4
    36010.883 20.842 70.012 935.411 3
    4428.433 90.775 30.034 520.882 2
    55911.977 70.852 30.015 424.790 2
    6529.567 70.817 60.021 127.105 3
    7509.617 30.803 60.022 831.494 1
    82011.570 10.723 40.029 221.478 3
    9417.796 30.813 30.031 019.480 9
    506014.536 20.855 20.013 924.163 0
    下载: 导出CSV

    表  2  监测样本拓扑指标值和SPE、I2Ie2统计值

    Table  2.   Topological indicator values of monitoring samples and statistic values of SPE, I2 and Ie2

    时刻序号时刻LNNSCCBCNESPEI2Ie2
    115:40:4320723.681 40.934 60.001 3185 9837.467 1×10-2921.867 43.464 4
    215:45:4312224.009 20.964 00.001 0145.370 95.218 6×10-2916.758 34.589 4
    315:50:436518.026 10.951 90.003 543.537 83.921 4×10-2914.541 31.976 5
    415:55:444418 2230.894 10.013 565.336 23.676 3×10-2913.287 65.875 4
    516:00:43338.149 00.884 70.010 146.486 19.812 5×10-306.221 82.664 7
    616:05:433910.791 10.892 80.019 441.822 51.581 9×10-297.543 92.545 2
    下载: 导出CSV

    表  3  文献[19]中K-mean算法对相同样本的复杂性识别结果

    Table  3.   Complexity recognition results of K-mean algorithm for the same sample in Ref.[19]

    时刻序号时刻NE1, 1C1, 1E1, 2C1, 2E2, 1C2, 1E2, 2C2, 2等级
    115:40:4324870.934 6710.923 8660.954 7720.955 8
    215:45:4318720.964 0810.962 7450.943 1640.942 5
    315:50:4314660.931 9510.925 4410.922 1350.927 6
    415:55:4413580.914 1520.912 4450.935 0330.898 8
    516:00:4311350.884 7340.882 1180.884 6160.885 6
    616:05:4312410.892 8400.881 7230.883 2250.853 0
    下载: 导出CSV
  • [1] ADAM R, JACEK S.The concept of initial air traffic situation assessment as a stage of medium-term conflict detection[J].Procedia Engineering, 2017, 187:420-424. doi: 10.1016/j.proeng.2017.04.395
    [2] PRANDINI M, PUTTA V, HU J H.A probabilistic measure of air traffic complexity in 3-D airspace[J].International Journal of Adaptive Control and Signal Processing, 2010, 24(10):813-829. doi: 10.1002/acs.1192
    [3] 张进, 胡明华, 张晨.空中交通管理中的复杂性研究[J].航空学报, 2009, 30(11):2132-2142. http://d.old.wanfangdata.com.cn/Periodical/hkxb200911019

    ZHANG J, HU M H, ZHANG C.Complexity research in air traffic management[J].Acta Aeronautica et Astronautica Sinica, 2009, 30(11):2132-2142(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb200911019
    [4] 张晨, 胡明华, 张进, 等.基于交通复杂性的扇区资源管理[J].南京航空航天大学学报, 2010, 42(5):607-613. http://d.old.wanfangdata.com.cn/Periodical/njhkht201005013

    ZHANG C, HU M H, ZHANG J, et al.Sector asset management based on air traffic complexity[J].Journal of Nanjing University of Aeronautics & Astronautics, 2010, 42(5):607-613(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/njhkht201005013
    [5] CHEN X W, STEVEN J L, SHIMON Y N.A framework of enroute air traffic conflict detection and resolution through complex network analysis[J].Computer in Industry, 2011, 62:787-794. doi: 10.1016/j.compind.2011.05.006
    [6] WANG H Y, WEN R Y, ZHAO Y F.Analysis of topological characteristic in air traffic situation networks[J].Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2015, 229(13):2497-2505. doi: 10.1177/0954410015578482
    [7] WANG H Y, XU X H, ZHAO Y F.Empirical analysis of aircraft clusters in air traffic situation networks[J].Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering 2017, 231(9): 1718-1731. doi: 10.1177/0954410016660870
    [8] ZANIN M.Network analysis reveals patterns behind air safety events [J].Physica A:Statistical Mechanics and Its Applications, 2014, 401:201-206. doi: 10.1016/j.physa.2014.01.032
    [9] HYVARNEN A, OJA E.A fast fixed-point algorithm for independent component analysis[J].Neural Computation, 1997, 9:1483-1492. doi: 10.1162/neco.1997.9.7.1483
    [10] HYVARNEN A, OJA E.Independent component analysis:Algorithms and applications[J].Neural Networks, 2000, 13(4-5):411-430. doi: 10.1016/S0893-6080(00)00026-5
    [11] LEE J M, YOO C K, LEE I B.Statistical process monitoring with independent component analysis[J].Journal of Process Control, 2004, 14(5):467-485. doi: 10.1016/j.jprocont.2003.09.004
    [12] TANG J J, WANG Y H, LIU F.Characterizing traffic time series based on complex network theory[J].Physica A:Statistical Mechanics and Its Applications, 2013, 392:4192-4201. doi: 10.1016/j.physa.2013.05.012
    [13] TARJAN R.Depth-first search and linear graph algorithms[C]//Symposium on Switching & Automata Theory.Piscataway: IEEE Press, 1971: 114-121.
    [14] FREEMAN L C.A set of measures of centrality based on betweenness[J].Sociometry, 1997, 40(1):35-41. doi: 10.2307-3033543/
    [15] WANG X Y, LI J Q.Detecting communities by the core-vertex and intimate degree in complex networks[J].Physica A:Statistical Mechanics and Its Applications, 2013, 392:2555-2563. doi: 10.1016/j.physa.2013.01.039
    [16] WANG X Y, CAO J Y, LI R, et al.A preferential attachment strategy for connectivity link addition strategy in improving the robustness of interdependent networks[J].Physica A:Statistical Mechanics and Its Applications, 2017, 483:412-422. doi: 10.1016/j.physa.2017.04.128
    [17] PATERA R P.Space vehicle conflict probability for ellipsoidal conflict volumes[J].Journal of Guidance, Control, and Dynamics, 2007, 30(6):1818-1821. http://www.researchgate.net/publication/245433462_space_vehicle_conflict_probability_for_ellipsoidal_conflict_volumes
    [18] SIMOGLOU A, MARTIN E B, MORRIS A J.Statistical performance monitoring of dynamic multivariate processes using state space modelling[J].Computers & Chemical Engineering, 2002, 26(6):909-920. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ac86c9713ac3874a7c8c3a2704b2b5ab
    [19] WANG H, SONG Z, WEN R, et al.Study on evolution characteristics of air traffic situation complexity based on complex network theory[J].Aerospace Science and Technology, 2016, 58:518-528. doi: 10.1016/j.ast.2016.09.016
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  849
  • HTML全文浏览量:  116
  • PDF下载量:  1239
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-03
  • 录用日期:  2019-12-15
  • 网络出版日期:  2020-05-20

目录

    /

    返回文章
    返回
    常见问答