留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于蒙特卡罗频率法的葡萄籽总酚含量高光谱测量变量选择

成云玲 杨蜀秦

成云玲, 杨蜀秦. 基于蒙特卡罗频率法的葡萄籽总酚含量高光谱测量变量选择[J]. 北京航空航天大学学报, 2019, 45(12): 2431-2437. doi: 10.13700/j.bh.1001-5965.2019.0361
引用本文: 成云玲, 杨蜀秦. 基于蒙特卡罗频率法的葡萄籽总酚含量高光谱测量变量选择[J]. 北京航空航天大学学报, 2019, 45(12): 2431-2437. doi: 10.13700/j.bh.1001-5965.2019.0361
CHENG Yunling, YANG Shuqin. Selection of measurement variables for hyperspectra of total phenol content in grape seeds based on Monte Carlo frequency method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(12): 2431-2437. doi: 10.13700/j.bh.1001-5965.2019.0361(in Chinese)
Citation: CHENG Yunling, YANG Shuqin. Selection of measurement variables for hyperspectra of total phenol content in grape seeds based on Monte Carlo frequency method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(12): 2431-2437. doi: 10.13700/j.bh.1001-5965.2019.0361(in Chinese)

基于蒙特卡罗频率法的葡萄籽总酚含量高光谱测量变量选择

doi: 10.13700/j.bh.1001-5965.2019.0361
基金项目: 

国家自然科学基金 31501228

国家自然科学基金 61876153

中央高校基本科研业务费专项资金 2452019180

详细信息
    作者简介:

    成云玲  女, 硕士研究生。主要研究方向:高光谱技术在农业信息领域的应用

    杨蜀秦  女, 博士, 副教授, 硕士生导师。主要研究方向:计算机视觉和模式识别

    通讯作者:

    杨蜀秦, E-mail: yangshuqin1978@163.com

  • 中图分类号: S663.1

Selection of measurement variables for hyperspectra of total phenol content in grape seeds based on Monte Carlo frequency method

Funds: 

National Natural Science Foundation of China 31501228

National Natural Science Foundation of China 61876153

the Fundamental Research Funds for the Central Universities 2452019180

More Information
  • 摘要:

    在利用高光谱建立葡萄籽总酚含量的预测模型中,为解决变量过多、模型复杂度高等问题,需依据光谱特点进行有效地数据降维。提出了一种蒙特卡罗频率法(MCF)对高光谱数据进行波长选择,并建立了葡萄籽总酚的支持向量回归(SVR)预测模型。该方法首先采用蒙特卡罗采样(MCS)选择波长子集;然后建立大量SVR子模型,并选出均方根误差(RMSE)较小的子模型,统计每个波长出现的频次;最后根据指数递减函数确定波长个数,选取频次最高的波长子集作为特征波长。结果表明,采用MCF可以在降维的同时提高模型的预测性能,波长数目由原始的196个减少到9个,波长范围均在950~1 400 nm,RMSE值从0.42减少到0.37,预测精度优于SPA等其他波长选择方法。因此,提出的基于MCF在高光谱数据处理中能有效选择特征波长,为准确建立预测模型提供了一种有效的方法。

     

  • 图 1  预处理后的5个品种葡萄籽平均光谱

    Figure 1.  Average spectra of five types of pretreated grape seeds

    图 2  MCF特征波长个数选择

    Figure 2.  Selection of number of characteristic wavelengths by MCF

    图 3  波段频次分布

    Figure 3.  Frequency distribution of spectral bands

    图 4  CARS方法波长的系数变化

    Figure 4.  Coefficient variation of wavelength by CARS

    图 5  3种方法选择的变量分布

    Figure 5.  Distribution of variables selected by three methods

    图 6  MCF不同采样次数的箱型图

    Figure 6.  Box graph of MCF with different sampling times

    表  1  葡萄籽总酚含量分布统计

    Table  1.   Distribution statistics of total phenol content in grape seeds

    参数 训练集 预测集
    样本数 48 12
    最小值/(g·L-1) 1.720 8 2.192 7
    最大值/(g·L-1) 8.386 9 8.326 3
    平均值/(g·L-1) 4.531 9 4.972 3
    标准偏差/(g·L-1) 1.642 9 1.858 6
    下载: 导出CSV

    表  2  不同降维方法的总酚预测结果比较

    Table  2.   Comparison of total phenol prediction results with different dimensionality reduction methods

    方法 变量数 (cg) 训练集 预测集
    R2 RMSE R2 RMSE
    SVR 196 (256, 84.45) 0.952 4 0.133 8 0.900 4 0.416 3
    MCF-SVR 9 (362, 2 048) 0.924 4 0.204 9 0.905 9 0.374 1
    SPA-SVR 18 (2 896, 362) 0.920 8 0.216 0 0.886 7 0.476 7
    CARS-SVR 7 (256, 1 448) 0.812 9 0.504 7 0.791 3 0.829 4
    下载: 导出CSV

    表  3  MCF结合不同回归方法的总酚预测结果比较

    Table  3.   Comparison of total phenol prediction results of MCF combined with different regression methods

    回归方法 (c, g) 训练集 预测集
    R2 RMSE R2 RMSE
    SVR (362, 2 048) 0.924 4 0.204 9 0.905 9 0.374 1
    PLSR (20.55, 5 793) 0.884 7 0.366 2 0.853 9 0.546 6
    RBF (862, 724) 0.872 2 0.340 6 0.875 6 0.428 9
    下载: 导出CSV
  • [1] 张保华, 李江波, 樊书祥, 等.高光谱成像技术在果蔬品质与安全无损检测中的原理及应用[J].光谱学与光谱分析, 2014, 34(10):2743-2751. doi: 10.3964/j.issn.1000-0593(2014)10-2743-09

    ZHANG B H, LI J B, FAN S X, et al.Principle and application of high spectral imaging technology in nondestructive testing of fruit and vegetable quality and safety[J].Spectroscopy and Spectral Analysis, 2014, 34(10):2743-2751(in Chinese). doi: 10.3964/j.issn.1000-0593(2014)10-2743-09
    [2] CHEN S, ZHANG F, NING J, et al.Predicting the anthocyanin content of wine grapes by NIR hyperspectral imaging[J].Food Chemistry, 2015, 172:788-793. doi: 10.1016/j.foodchem.2014.09.119
    [3] EIMASRY G, SU D W, ALLEN P, et al.Near-infrared hyperspectral imaging for predicting colour, pH and tenderness of fresh beef[J].Journal of Food Engineering, 2012, 110(1):127-140. doi: 10.1016/j.jfoodeng.2011.11.028
    [4] LEO L, ROGER J M, HERRERO-LANGREO A, et al.Comparison of multispectral indexes extracted from hyperspectral images for the assessment of fruit ripening[J].Journal of Food Engineering, 2011, 104(4):612-620. doi: 10.1016/j.jfoodeng.2011.01.028
    [5] GMES V M, FERNANDES A M, FAIA A, et al.Comparison of different approaches for the prediction of sugar content in new vintages of whole port wine grape berries using hyperspectral imaging[J].Computers and Electronics in Agriculture, 2017, 140:244-254. doi: 10.1016/j.compag.2017.06.009
    [6] LI W, PRASAD S, FOWLER J E, et al.Locality-preserving dimensionality reduction and classification for hyperspectral image analysis[J].IEEE Transactions on Geoscience & Remote Sensing, 2012, 50(4):1185-1198. http://cn.bing.com/academic/profile?id=fb8832b1b1b04b580b68e48e12b5b2e9&encoded=0&v=paper_preview&mkt=zh-cn
    [7] 宦克为, 刘小溪, 郑峰, 等.基于蒙特卡罗特征投影法的小麦蛋白质近红外光谱测量变量选择[J].农业工程学报, 2013, 29(4):266-271. http://d.old.wanfangdata.com.cn/Periodical/nygcxb201304033

    HUAN K W, LIU X X, ZHENG F, et al.Selection of variables for wheat protein near infrared spectroscopy based on monte carlo characteristic projection[J].Journal of Agricultural Engineering, 2013, 29(4):266-271(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/nygcxb201304033
    [8] 郝勇, 孙旭东, 潘圆媛, 等.蒙特卡罗无信息变量消除方法用于近红外光谱预测果品硬度和表面色泽的研究[J].光谱学与光谱分析, 2011, 31(5):1225-1229. doi: 10.3964/j.issn.1000-0593(2011)05-1225-05

    HAO Y, SUN X D, PAN Y Y, et al.Monte-carlo method of elimination of uninformed variables was used to predict fruit hardness and surface color by near infrared spectroscopy[J].Spectroscopy and Spectral Analysis, 2011, 31(5):1225-1229(in Chinese). doi: 10.3964/j.issn.1000-0593(2011)05-1225-05
    [9] 顾章源, 刘翔, 苏枫, 等.基于流形学习的多光谱优化波段选择算法研究[J].上海航天, 2017, 34(3):40-46. http://d.old.wanfangdata.com.cn/Periodical/shht201703005

    GU Z Y, LIU X, SU F, et al.Research on multi-spectral optimal band selection algorithm based on manifold learning[J].Aerospace Shanghai, 2017, 34(3):40-46(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/shht201703005
    [10] ARAUJO M C U, SALDANHA T C B, GALVAO R K H, et al.The successive projections algorithm for variable selection in spectroscopic multicomponent analysis[J].Chemometrics & Intelligent Laboratory Systems, 2001, 57(2):65-73. http://cn.bing.com/academic/profile?id=277cd916ff043e84a38c44a9dac2f931&encoded=0&v=paper_preview&mkt=zh-cn
    [11] CENTNER V, MASSART D L, NOORD O E D, et al.Elimination of uninformative variables for multivariate calibration[J].Analytical Chemistry, 1996, 68(21):3851-3858. doi: 10.1021/ac960321m
    [12] MOROS J, KULIGOWSKI J, QINTAS G, et al.New cut-off criterion for uninformative variable elimination in multivariate calibration of near-infrared spectra for the determination of heroin in illicit street drugs[J].Analytica Chimica Acta, 2008, 630(2):150-160. doi: 10.1016/j.aca.2008.10.024
    [13] LI H, LIANG Y, XU Q, et al.Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration[J].Analytica Chimica Acta, 2009, 648(1):77-84. doi: 10.1016/j.aca.2009.06.046
    [14] CAI W, LI Y, SHAO X.A variable selection method based on uninformative variable elimination for multivariate calibration of near-infrared spectra[J].Chemometrics & Intelligent Laboratory Systems, 2008, 90(2):188-194. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=89c04f0bb6a478635b303fd55e197cfe
    [15] LI H, LIANG Y, XU Q, et al.Model population analysis for variable selection[J].Journal of Chemometrics, 2010, 24(7-8):418-423. doi: 10.1002/cem.1300
    [16] LI H, XU Q, ZHANG W, et al.Variable complementary network:A novel approach for identifying biomarkers and their mutual associations[J].Metabolomics, 2012, 8(6):1218-1226. doi: 10.1007/s11306-012-0410-z
    [17] HARBERTSON J F, PICCIOTTO E A, ACKERMANN K.Phenolic and anthocyanin assay for use with spectrophotometer[D].Davis, CA: University of California, 2005.
    [18] 褚小立, 袁洪福, 陆婉珍.近红外分析中光谱预处理及波长选择方法进展与应用[J].化学进展, 2004, 16(4):528-542. doi: 10.3321/j.issn:1005-281X.2004.04.008

    CHU X L, YUAN H F, LU W Z.Progress and application of spectral pretreatment and wavelength selection methods in nir analysis[J].Progress in Chemistry, 2004, 16(4):528-542(in Chinese). doi: 10.3321/j.issn:1005-281X.2004.04.008
    [19] GORRY P A.General least-squares smoothing and differentiation by the convolution (Savitzky-Golay) method[J].Analytical Chemistry, 1990, 62(6):570-573.
    [20] ZHANG C, GUO C, LIU F, et al.Hyperspectral imaging analysis for ripeness evaluation of strawberry with support vector machine[J].Journal of Food Engineering, 2016, 179:11-18. doi: 10.1016/j.jfoodeng.2016.01.002
    [21] NI Z, XU L, XIAODUO J, et al.Determination of total iron-reactive phenolics, anthocyanins and tannins in wine grapes of skins and seeds based on near-infrared hyperspectral imaging[J].Food Chemistry, 2017, 237:811-817. doi: 10.1016/j.foodchem.2017.06.007
    [22] CHANG C C, LIN C J.LIBSVM:A library for support vector machines[J].ACM Transactions on Intelligent Systems and Technology, 2011, 2(3):27 http://d.old.wanfangdata.com.cn/Periodical/jdq201315008
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  698
  • HTML全文浏览量:  184
  • PDF下载量:  476
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-08
  • 录用日期:  2019-08-03
  • 网络出版日期:  2019-12-20

目录

    /

    返回文章
    返回
    常见问答