留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于生成对抗网络的零样本图像分类

魏宏喜 张越

魏宏喜, 张越. 基于生成对抗网络的零样本图像分类[J]. 北京航空航天大学学报, 2019, 45(12): 2345-2350. doi: 10.13700/j.bh.1001-5965.2019.0363
引用本文: 魏宏喜, 张越. 基于生成对抗网络的零样本图像分类[J]. 北京航空航天大学学报, 2019, 45(12): 2345-2350. doi: 10.13700/j.bh.1001-5965.2019.0363
WEI Hongxi, ZHANG Yue. Zero-shot image classification based on generative adversarial network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(12): 2345-2350. doi: 10.13700/j.bh.1001-5965.2019.0363(in Chinese)
Citation: WEI Hongxi, ZHANG Yue. Zero-shot image classification based on generative adversarial network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(12): 2345-2350. doi: 10.13700/j.bh.1001-5965.2019.0363(in Chinese)

基于生成对抗网络的零样本图像分类

doi: 10.13700/j.bh.1001-5965.2019.0363
基金项目: 

国家自然科学基金 61463038

内蒙古自治区自然科学基金重大项目 2019ZD14

详细信息
    作者简介:

    魏宏喜   男, 博士, 教授, 博士生导师。主要研究方向:机器学习与数据挖掘

    张越   男, 硕士研究生。主要研究方向:图像分类

    通讯作者:

    魏宏喜. E-mail: cswhx@imu.edu.cn

  • 中图分类号: TP391

Zero-shot image classification based on generative adversarial network

Funds: 

National Natural Science Foundation of China 61463038

Natural Science Foundation of Inner Mongolia Autonomous Region 2019ZD14

More Information
  • 摘要:

    在图像分类任务中,零样本图像分类问题已成为一个研究热点。为了解决零样本图像分类问题,采用一种基于生成对抗网络(GAN)的方法,通过生成未知类的图像特征使得零样本分类任务转换为传统的图像分类任务。同时对生成对抗网络中的判别网络做出改进,使其判别过程更加准确,从而进一步提高生成图像特征的质量。实验结果表明:所提方法在AWA、CUB和SUN数据集上的分类准确率分别提高了0.4%、0.4%和0.5%。因此,所提方法通过改进生成对抗网络,能够生成质量更好的图像特征,从而有效解决零样本图像分类问题。

     

  • 图 1  零样本学习示例

    Figure 1.  An example of zero-shot learning

    图 2  f-CLWSGAN模型的网络结构

    Figure 2.  Network structure of f-CLSWGAN model

    图 3  FD-fGAN模型的网络结构

    Figure 3.  Network structure of FD-fGAN model

    图 4  不同数据集上的分类准确率

    Figure 4.  Classification accuracy on different datasets

    表  1  三个数据集的划分情况

    Table  1.   Division of three datasets

    数据集 类别数 已知类别数 未知类别数
    AWA 50 40 10
    CUB 200 150 50
    SUN 717 645 72
    下载: 导出CSV

    表  2  不同方法在3个数据集上的分类准确率比较

    Table  2.   Comparison of classification accuracy of different methods on three datasets

    方法 分类准确率/%
    AWA CUB SUN
    DAP[6] 44.1 40.4 39.9
    CONSE[16] 45.6 34.3 38.8
    SSE[17] 60.1 43.9 51.5
    DeViSE[18] 54.2 52.0 56.5
    SJE[19] 65.6 53.9 53.7
    ESZSL[7] 58.2 53.9 54.5
    ALE[20] 59.9 54.9 58.1
    SYNC[2] 54.0 55.6 56.3
    f-CLSWGAN[9] 68.2 57.3 60.8
    FD-fGAN 68.6 57.7 61.3
    下载: 导出CSV
  • [1] LAROCHELLE H, ERHAN D, BENGIO Y.Zero-data learning of new tasks[C]//Proceedings of the Association for the Advancement of Artificial Intelligence. Palo Alto: AAAI Press, 2008: 646-651. http://www.cs.toronto.edu/~larocheh/publications/aaai2008_zero-data.pdf
    [2] CHANGPINYO S, CHAO W, GONG B, et al.Synthesized classifiers for zero-shot learning[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway, NJ: IEEE Press, 2016: 5327-5336. https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Changpinyo_Synthesized_Classifiers_for_CVPR_2016_paper.pdf
    [3] KODIROV E, XIANG T, GONG S.Semantic auto-encoder for zero-shot learning[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway, NJ: IEEE Press, 2017: 4447-4456. http://openaccess.thecvf.com/content_cvpr_2017/papers/Kodirov_Semantic_Autoencoder_for_CVPR_2017_paper.pdf
    [4] XIAN Y, SCHIELE B, AKATA Z.Zero-shot learning-the good, the bad and the ugly[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway, NJ: IEEE Press, 2017: 3077-3086. https://arxiv.org/pdf/1703.04394.pdf
    [5] DING Z, SHAO M, FU Y.Low-rank embedded ensemble semantic dictionary for zero-shot learning[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway, NJ: IEEE Press, 2017: 6005-6013. http://openaccess.thecvf.com/content_cvpr_2017/papers/Ding_Low-Rank_Embedded_Ensemble_CVPR_2017_paper.pdf
    [6] LAMPERT C H, NICKISCH H, HARMELING S.Attribute-based classification for zero-shot visual object categorization[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(3):453-465. doi: 10.1109/TPAMI.2013.140
    [7] ROMERA-PAREDES B, TORR P.An embarrassingly simple approach to zero-shot learning[C]//Proceedings of the International Conference on Machine Learning.Madison: Omnipress, 2015: 2152-2161. http://proceedings.mlr.press/v37/romera-paredes15.pdf
    [8] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al.Generative adversarial nets[C]//Proceedings of the Neural Information Processing Systems.Cambridge: MIT Press, 2014: 2672-2680. https://arxiv.org/pdf/1406.2661v1.pdf
    [9] XIAN Y, LORENZ T, SCHIELE B, et al.Feature generating networks for zero-shot learning[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway, NJ: IEEE Press, 2018: 5542-5551. https://arxiv.org/pdf/1712.00981.pdf
    [10] ZHU Y, ELHOSEINY M, LIU B, et al.A generative adversarial approach for zero-shot learning from noisy texts[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway, NJ: IEEE Press, 2018: 1004-1013. http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhu_A_Generative_Adversarial_CVPR_2018_paper.pdf
    [11] ARJOVSKY M, CHINTALA S, BOTTOU L.Wasserstein generative adversarial networks[C]//Proceedings of the International Conference on Machine Learning.Madison: Omnipress, 2017: 214-223.
    [12] MIRZA M, OSINDERO S.Conditional generative adversarial nets[EB/OL].(2014-11-06)[2019-07-01].https://arxiv.org/abs/1411.1784.
    [13] LAMPERT C H, NICKISCH H, HARMELING S.Learning to detect unseen object classes by between-class attribute transfer[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway, NJ: IEEE Press, 2009: 951-958. https://blog.csdn.net/u011070272/article/details/73250102
    [14] WAH C, BRANSON S, WELINDER P, et al.The Caltech-UCSD Birds-200-2011 dataset:CNS-TR-2011-001[R].Pasadena:California Institute of Technology, 2011.
    [15] PATTERSON G, HAYS J.SUN attribute database: Discovering, annotating, and recognizing scene attributes[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway, NJ: IEEE Press, 2012: 2751-2758.
    [16] NOROUZI M, MIKOLOV T, BENGIO S.Zero-shot learning by convex combination of semantic embeddings[C]//Proceedings of the International Conference on Learning Representations.Brookline: Microtome Publishing, 2014: 10-19. https://arxiv.org/abs/1312.5650
    [17] ZHANG Z, SALIGRAMA V.Zero-shot learning via semantic similarity embedding[C]//Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition.Piscataway, NJ: IEEE Press, 2015: 4166-4174. https://arxiv.org/pdf/1509.04767.pdf
    [18] FROME A, CORRADO G S, SHLENS J, et al.DeViSE: A deep visual semantic embedding model[C]//Proceedings of the Neural Information Processing Systems.Cambridge: MIT Press, 2013: 2121-2129. http://www.cs.toronto.edu/~ranzato/publications/frome_nips2013.pdf
    [19] AKATA Z, REED S, WALTER D, et al.Evaluation of output embeddings for fine-grained image classification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway, NJ: IEEE Press, 2015: 2927-2936. https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Akata_Evaluation_of_Output_2015_CVPR_paper.pdf
    [20] AKATA Z, PERRONNIN F, HARCHAOUI Z, et al.Label-embedding for image classification[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(7):1425-1438. doi: 10.1109/TPAMI.2015.2487986
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  1297
  • HTML全文浏览量:  120
  • PDF下载量:  529
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-08
  • 录用日期:  2019-08-03
  • 网络出版日期:  2019-12-20

目录

    /

    返回文章
    返回
    常见问答