留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于边缘和结构的无参考屏幕内容图像质量评估

魏乐松 陈俊豪 牛玉贞

魏乐松, 陈俊豪, 牛玉贞等 . 基于边缘和结构的无参考屏幕内容图像质量评估[J]. 北京航空航天大学学报, 2019, 45(12): 2449-2455. doi: 10.13700/j.bh.1001-5965.2019.0367
引用本文: 魏乐松, 陈俊豪, 牛玉贞等 . 基于边缘和结构的无参考屏幕内容图像质量评估[J]. 北京航空航天大学学报, 2019, 45(12): 2449-2455. doi: 10.13700/j.bh.1001-5965.2019.0367
WEI Lesong, CHEN Junhao, NIU Yuzhenet al. Blind quality assessment for screen content images based on edge and structure[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(12): 2449-2455. doi: 10.13700/j.bh.1001-5965.2019.0367(in Chinese)
Citation: WEI Lesong, CHEN Junhao, NIU Yuzhenet al. Blind quality assessment for screen content images based on edge and structure[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(12): 2449-2455. doi: 10.13700/j.bh.1001-5965.2019.0367(in Chinese)

基于边缘和结构的无参考屏幕内容图像质量评估

doi: 10.13700/j.bh.1001-5965.2019.0367
基金项目: 

国家自然科学基金 61672158

福建省自然科学基金 2019J2006

详细信息
    作者简介:

    魏乐松  男, 硕士研究生。主要研究方向:多媒体

    陈俊豪  男, 博士研究生。主要研究方向:多媒体、计算机图像学和人工智能

    牛玉贞  女, 博士, 教授, 博士生导师。主要研究方向:计算机视觉、多媒体和计算机图像学

    通讯作者:

    牛玉贞. E-mail: yuzhenniu@gmail.com

  • 中图分类号: TP399

Blind quality assessment for screen content images based on edge and structure

Funds: 

National Natural Science Foundation of China 61672158

Natural Science Foundation of Fujian Province 2019J2006

More Information
  • 摘要:

    屏幕内容图像(SCI)是一种与传统自然图像不同的图像,具有更多的文本、图形以及特殊的布局。考虑文本、图形、图像和布局对屏幕内容图像质量的影响,提出了针对屏幕内容图像的基于边缘和结构的无参考质量评估(BES)算法。文本、图形和图像具有大量边缘,并且人类视觉系统对边缘高度敏感,因此BES算法首先使用Gabor滤波器的虚部提取边缘并计算每张屏幕内容图像的边缘特征。其次,提取一个结构特征来表示屏幕内容图像的布局。具体而言,利用Scharr滤波器计算得到一个局部二值模式(LBP)图,接着利用LBP图计算得到结构特征。最后,应用随机森林回归算法将边缘和结构特征映射为主观分数。实验结果表明,在数据库SIQAD和SCID上,所提出BES算法性能的皮尔森线性相关系数(PLCC)相对于对比算法中最先进的无参考算法,分别提高了2.63%和11.22%,甚至高于一些全参考算法。

     

  • 图 1  失真屏幕内容图像以及对应的特征图和特征直方图示例

    Figure 1.  Examples of distorted screen content images, their feature maps, and feature histograms

    表  1  SIQAD数据库上的实验结果

    Table  1.   Experimental results on SIQAD database

    指标 失真
    类型
    全参考 无参考
    PSNR SSIM MAD GMSD SPQA SQI ESIM GFM NIOE BRISQUE GWH-GLBP NRLT BES
    PLCC GN 0.905 3 0.880 6 0.885 2 0.895 6 0.892 1 0.882 9 0.889 1 0.899 0 0.863 4 0.904 5 0.849 3 0.898 3 0.909 0
    GB 0.850 3 0.910 4 0.912 0 0.909 4 0.905 8 0.920 2 0.923 4 0.914 3 0.756 0 0.890 9 0.909 8 0.882 6 0.922 4
    MB 0.704 4 0.806 0 0.836 1 0.843 6 0.831 5 0.878 9 0.888 6 0.866 2 0.548 7 0.857 1 0.832 0 0.861 1 0.869 4
    CC 0.740 1 0.743 5 0.393 3 0.782 7 0.799 2 0.772 4 0.764 1 0.810 7 0.355 5 0.541 7 0.410 8 0.787 8 0.822 4
    JPEG 0.754 5 0.748 7 0.766 2 0.774 6 0.769 6 0.821 8 0.799 9 0.839 8 0.598 0 0.288 7 0.572 9 0.781 2 0.757 6
    J2K 0.789 3 0.774 9 0.834 4 0.850 9 0.825 2 0.827 1 0.788 8 0.848 6 0.516 5 0.350 9 0.716 3 0.748 9 0.818 2
    LSC 0.780 5 0.730 7 0.818 4 0.855 9 0.795 8 0.831 0 0.791 5 0.828 8 0.586 9 0.286 5 0.551 2 0.730 9 0.757 5
    ALL 0.585 8 0.756 1 0.546 7 0.729 1 0.858 4 0.864 4 0.878 8 0.882 8 0.426 1 0.359 1 0.787 4 0.848 2 0.870 5
    SRCC GN 0.879 0 0.869 4 0.872 1 0.885 6 0.882 3 0.860 2 0.875 7 0.879 5 0.842 9 0.887 5 0.828 7 0.874 7 0.885 1
    GB 0.857 3 0.892 1 0.908 7 0.911 9 0.901 7 0.924 4 0.923 9 0.913 2 0.649 4 0.871 5 0.894 1 0.865 6 0.904 5
    MB 0.713 0.804 1 0.835 7 0.844 1 0.825 5 0.88 1 0.893 8 0.869 9 0.427 2 0.865 3 0.822 9 0.843 2 0.857 1
    CC 0.682 8 0.640 5 0.390 7 0.637 8 0.615 4 0.667 7 0.610 8 0.703 8 0.132 4 0.313 5 0.246 0 0.599 6 0.658 2
    JPEG 0.756 8 0.757 6 0.767 4 0.771 2 0.767 3 0.818 9 0.798 9 0.843 4 0.510 9 0.220 8 0.480 3 0.738 6 0.707 2
    J2K 0.774 6 0.760 3 0.838 2 0.843 6 0.815 2 0.816 9 0.782 7 0.844 4 0.323 8 0.301 8 0.701 7 0.731 5 0.793 9
    LSC 0.793 0.737 1 0.815 4 0.859 2 0.800 3 0.843 2 0.795 8 0.844 5 0.394 4 0.184 4 0.504 9 0.667 5 0.729 1
    ALL 0.557 0 0.756 6 0.583 1 0.730 5 0.841 6 0.854 8 0.863 2 0.873 5 0.382 7 0.662 0.719 4 0.824 5 0.848 8
    RMSE GN 6.337 2 7.704 4 6.939 1 6.635 4 6.739 4 6.827 2 6.683 5 7.408 3 6.013 7 7.682 9 6.310 0 6.106 2
    GB 7.737 6 6.361 9 6.226 9 6.981 6 6.430 1 5.827 0 6.145 9 9.802 6 6.479 2 6.146 6 6.689 2 5.597 4
    MB 9.228 7 7.060 0 7.132 29 6.981 6 7.222 3 5.963 9 6.518 4 10.613 6 6.198 2 6.934 7 6.428 4 6.432 3
    CC 8.459 1 6.818 4 11.565 7.829 7 7.618 4 8.114 1 7.363 8 11.467 8 9.966 11.198 7.560 1 6.713 5
    JPEG 6.116 5 5.640 6 6.038 5.942 7 6.000 0 5.640 1 5.100 9 7.286 9 8.603 7 7.323 8 5.712 1 5.988 0
    J2K 6.381 9 6.180 4 5.727 6 5.459 1 5.870 6 6.387 7 5.498 5 8.331 8 9.094 6.775 0 6.505 8 5.704 8
    LSC 5.333 6 4.937 9 4.902 5 4.412 1 5.166 4 5.215 0 4.773 6 6.815 9 7.871 2 7.028 9 5.783 6 5.390 8
    ALL 11.601 10.855 11.986 9.797 2 7.342 1 7.198 2 6.831 0 6.723 4 12.794 1 11.717 8.672 6 7.444 7 6.914 7
    下载: 导出CSV

    表  2  SCID数据库上的实验结果

    Table  2.   Experimental results on SCID database

    指标 失真
    类型
    全参考 无参考
    PSNR SSIM MAD IFC GSIM NIQE BRISQUE GWH-GLBP NRLT BES
    PLCC GN 0.953 0 0.935 4 0.931 5 0.889 7 0.917 0 0.832 4 0.964 5 0.861 9 0.968 1 0.939 8
    GB 0.777 2 0.871 1 0.855 9 0.840 6 0.844 9 0.591 2 0.584 7 0.714 4 0.667 2 0.855 3
    MB 0.761 5 0.879 4 0.836 2 0.337 2 0.838 3 0.539 0 0.643 4 0.673 6 0.590 6 0.931 4
    CC 0.743 5 0.690 3 0.498 7 0.119 8 0.867 5 0.284 0 0.473 4 0.252 0 0.499 3 0.812 2
    JPEG 0.839 3 0.858 1 0.925 1 0.876 2 0.937 3 0.682 4 0.587 9 0.769 4 0.851 2 0.820 5
    J2K 0.917 6 0.858 6 0.938 1 0.857 0 0.944 1 0.709 9 0.551 5 0.664 5 0.832 6 0.795 4
    CSC 0.062 2 0.089 0 0.129 6 0.076 4 0.056 0 0.219 6 0.187 9 0.213 4 0.196 3 0.311 0
    HEVC-SCC 0.799 1 0.863 5 0.895 3 0.791 8 0.883 5 0.428 9 0.441 8 0.614 2 0.533 4 0.587 5
    CQD 0.921 0 0.866 8 0.901 4 0.765 5 0.897 4 0.578 7 0.714 6 0.603 4 0.725 0 0.830 3
    ALL 0.762 2 0.757 9 0.771 9 0.628 5 0.704 2 0.339 2 0.630 3 0.664 7 0.706 0 0.785 2
    SRCC GN 0.942 4 0.917 1 0.926 2 0.887 7 0.911 2 0.850 5 0.987 1 0.866 9 0.961 2 0.933 3
    GB 0.702 0.869 8 0.860 3 0.835 1 0.842 0 0.346 2 0.516 2 0.701 9 0.625 0 0.847 9
    MB 0.737 5 0.858 8 0.829 6 0.447 7 0.819 4 0.369 1 0.626 5 0.641 9 0.512 3 0.788 3
    CC 0.726 5 0.656 4 0.478 4 0.119 8 0.830 4 0.100 4 0.309 6 0.231 4 0.303 1 0.477 3
    JPEG 0.823 1 0.849 0 0.924 2 0.877 0 0.936 6 0.629 1 0.546 9 0.743 0 0.838 2 0.795 7
    J2K 0.907 4 0.843 9 0.933 0 0.845 7 0.934 9 0.654 0 0.499 7 0.639 8 0.791 6 0.763 4
    CSC 0.090 8 0.096 3 0.144 0 0.052 1 0.121 4 0.040 1 0.014 3 0.098 6 0.100 9 0.109 8
    HEVC-SCC 0.807 4 0.826 3 0.877 1 0.786 9 0.873 0 0.392 1 0.244 4 0.485 1 0.452 4 0.465 4
    CQD 0.908 0 0.776 6 0.902 4 0.736 8 0.863 4 0.439 7 0.558 0 0.504 6 0.592 3 0.754 8
    ALL 0.751 2 0.714 6 0.757 6 0.579 9 0.699 3 0.272 7 0.606 6 0.621 1 0.686 6 0.761 3
    RMSE GN 3.809 3 4.445 8 4.571 4 5.738 0 5.012 7 6.960 2 3.236 9 6.362 3 3.167 9 4.516 2
    GB 6.663 3 5.199 8 5.447 5 5.735 4 5.664 8 8.442 2 8.476 7 7.311 0 7.756 7 5.436 5
    MB 7.084 3 5.204 4 5.994 7 10.290 5 5.960 7 8.984 9 8.243 7 7.931 1 8.697 9 6.425 3
    CC 5.986 7 6.476 7 7.759 0 8.887 6 4.452 4 8.482 1 7.717 8 8.569 8 7.689 1 5.183 6
    JPEG 8.171 8 7.717 9 5.707 6 7.243 1 5.236 9 10.900 1 12.138 6 9.494 8 7.889 7 8.634 2
    J2K 6.322 2 8.156 2 5.510 3 8.198 6 5.246 2 11.167 3 13.125 7 11.586 3 8.714 8 9.254 0
    CSC 9.820 3 9.800 3 9.756 4 9.810 6 9.823 9 9.348 9 9.496 6 9.523 4 9.535 6 9.265 4
    HEVC-SCC 8.400 9 8.503 7 6.198 8 8.496 9 6.517 6 12.369 5 12.354 5 10.827 0 11.556 2 11.138 2
    CQD 4.981 4 7.985 5 5.535 4 8.226 9 5.640 6 10.376 3 8.708 3 10.002 5 8.850 8 7.101 5
    ALL 9.168 2 9.613 3 8.973 9 11.015 7 10.055 2 13.327 1 10.996 7 10.520 5 9.981 1 8.831 9
    下载: 导出CSV
  • [1] WANG Z, BOVIK A C, SHEIKH H R, et al.Image quality assessment:from error visibility to structural similarity[J].IEEE Transactions on Image Processing, 2004, 13(4):600-612. doi: 10.1089-fpd.2009.0394/
    [2] XUE W, ZHANG L, MOU X, et al.Gradient magnitude similarity deviation:A highly efficient perceptual image quality index[J].IEEE Transactions on Image Processing, 2014, 23(2):684-695. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1308.3052
    [3] MITTAL A, SOUNDARARAJAN R, BOVIK A C.Making a 'completely blind' image quality analyzer[J].IEEE Signal Processing Letters, 2013, 20(3):209-212. doi: 10.1109/LSP.2012.2227726
    [4] MITTAL A, MOORTHY A K, BOVIK A C. No-reference image quality assessment in the spatial domain[J]. IEEE Transactions on Image Processing, 2012, 21(12):4695-4708. doi: 10.1109/TIP.2012.2214050
    [5] YANG H, FANG Y, LIN W.Perceptual quality assessment of screen content images[J].IEEE Transactions on Image Processing, 2015, 24(11):4408-4421. doi: 10.1109/TIP.2015.2465145
    [6] WANG S, GU K, ZENG K, et al.Objective quality assessment and perceptual compression of screen content images[J].IEEE Computer Graphics and Applications, 2016, 38(1):47-58. http://cn.bing.com/academic/profile?id=afb530fcb8d57edf81be66a52bddb021&encoded=0&v=paper_preview&mkt=zh-cn
    [7] WANG S, GU K, ZHANG X, et al.Reduced-reference quality assessment of screen content images[J].IEEE Transactions on Circuits and Systems for Video Technology, 2016, 28(1):1-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3b4d028baf5733721ef44cf665499817
    [8] SHAO F, GAO Y, LI F, et al.Toward a blind quality predictor for screen content images[J].IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2017, 48(9):1-10. http://cn.bing.com/academic/profile?id=2459d4882e48e7d12f4bde49d15c8aa2&encoded=0&v=paper_preview&mkt=zh-cn
    [9] FANG Y, YAN J, LI L, et al.No reference quality assessment for screen content images with both local and global feature representation[J].IEEE Transactions on Image Processing, 2018, 27(4):1600-1610. http://cn.bing.com/academic/profile?id=b45dfd75d33067d502084c9f002b9728&encoded=0&v=paper_preview&mkt=zh-cn
    [10] GUO X, HUANG L, GU K, et al.Naturalization of screen content images for enhanced quality evaluation[J].IEICE Transactions on Information and Systems, 2017, 100(3):574-577. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=J-STAGE_2199740
    [11] NI Z, ZENG H, MA L, et al.A Gabor feature-based quality assessment model for the screen content Images[J].IEEE Transactions on Image Processing, 2018, 27(9):4516-4528. doi: 10.1109/TIP.2018.2839890
    [12] DAUGMAN J G.Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters[J].Journal of the Optical Society of America A, 1985, 2(7):1160-1169. doi: 10.1364/JOSAA.2.001160
    [13] JONES J P, PALMER L A.An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex[J].Journal of Neurophysiology, 1987, 58(6):1233-1258. doi: 10.1152/jn.1987.58.6.1233
    [14] GEUSEBROEK J M, VAN DEBOOMGAARD R, SMEULDERS A W M, et al.Color invariance[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(12):1338-1350. doi: 10.1109/34.977559
    [15] GEUSEBROEK J M, VAN DEBOOMGAARD R, SMEULDERS A W M, et al.Color and scale: The spatial structure of color images[C]//Proceedings of the European Conference on Computer Vision.Berlin: Springer, 2000: 331-341.
    [16] OJALA T, PIETIKAINEN M, MAENPAA T.Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J].Classification with Local Binary Patterns, 2002, 24(7):971-987. http://cn.bing.com/academic/profile?id=bbab6ef5dd30d698066c963f5602e424&encoded=0&v=paper_preview&mkt=zh-cn
    [17] LI Q, LIN W, FANG Y.No-reference quality assessment for multiply-distorted images in gradient domain[J].IEEE Signal Processing Letters, 2016, 23(4):541-545. doi: 10.1109/LSP.2016.2537321
    [18] HUGHES H C, NOZAWA G, KITTERLE F.Global precedence, spatial frequency channels, and the statistics of natural images[J].Journal of Cognitive Neuroscience, 1996, 8(3):197-230. doi: 10.1162/jocn.1996.8.3.197
    [19] NI Z, MA L, ZENG H, et al.ESIM:Edge similarity for screen content image quality assessment[J].IEEE Transactions on Image Processing, 2017, 26(10):4818-4831. doi: 10.1109/TIP.2017.2718185
    [20] ERIC C L, DAMON M C.Most apparent distortion:Full-reference image quality assessment and the role of strategy[J].Journal of Electronic Imaging, 2010, 19(1):011006. doi: 10.1117/1.3267105
    [21] SHEIKH H R, BOVIK A C, DE VECIANA G, et al.An information fidelity criterion for image quality assessment using natural scene statistics[J].IEEE Transactions on Image Processing, 2005, 14(12):2117-2128. doi: 10.1109/TIP.2005.859389
    [22] LIU A, LIN W, NARWARIA M.Image quality assessment based on gradient similarity[J].IEEE Transactions on Image Processing, 2012, 21(4):1500-1512. doi: 10.1109/TIP.2011.2175935
  • 加载中
图(1) / 表(2)
计量
  • 文章访问数:  860
  • HTML全文浏览量:  102
  • PDF下载量:  351
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-09
  • 录用日期:  2019-08-03
  • 网络出版日期:  2019-12-20

目录

    /

    返回文章
    返回
    常见问答