留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多尺度失真感知特征的重定向图像质量评估

吴志山 张帅 牛玉贞

吴志山, 张帅, 牛玉贞等 . 基于多尺度失真感知特征的重定向图像质量评估[J]. 北京航空航天大学学报, 2019, 45(12): 2487-2494. doi: 10.13700/j.bh.1001-5965.2019.0368
引用本文: 吴志山, 张帅, 牛玉贞等 . 基于多尺度失真感知特征的重定向图像质量评估[J]. 北京航空航天大学学报, 2019, 45(12): 2487-2494. doi: 10.13700/j.bh.1001-5965.2019.0368
WU Zhishan, ZHANG Shuai, NIU Yuzhenet al. Retargeted image quality assessment based on multi-scale distortion-aware feature[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(12): 2487-2494. doi: 10.13700/j.bh.1001-5965.2019.0368(in Chinese)
Citation: WU Zhishan, ZHANG Shuai, NIU Yuzhenet al. Retargeted image quality assessment based on multi-scale distortion-aware feature[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(12): 2487-2494. doi: 10.13700/j.bh.1001-5965.2019.0368(in Chinese)

基于多尺度失真感知特征的重定向图像质量评估

doi: 10.13700/j.bh.1001-5965.2019.0368
基金项目: 

国家自然科学基金 61672158

福建省自然科学基金 2019J02006

详细信息
    作者简介:

    吴志山  男, 硕士研究生。主要研究方向:多媒体和计算机图形学

    张帅  男, 硕士。主要研究方向:多媒体和计算机图形学

    牛玉贞  女, 博士, 教授, 博士生导师。主要研究方向:计算机视觉、多媒体和计算机图形学

    通讯作者:

    牛玉贞. E-mail: yuzhenniu@gmail.com

  • 中图分类号: V221+.3;TB553

Retargeted image quality assessment based on multi-scale distortion-aware feature

Funds: 

National Natural Science Foundation of China 61672158

Natural Science Foundation of Fujian Province, China 2019J02006

More Information
  • 摘要:

    在不同宽高比显示设备上的图像观看体验通常受到图像重定向操作方法的影响。为了提高重定向图像主观感知与客观评估之间的一致性,提出了基于多尺度失真感知特征(MSDA)的客观重定向图像质量评估(RIQA)方法。语义失真和细节失真经常出现在图像的不同尺度上,因此从图像的不同尺度中提取失真感知特征。提出了一个描述原始图像和重定向图像之间的宽高比相似度(ARS)的精确度量。此外,使用视觉注意力融合图来模拟人类视觉系统对图像的主观关注度。在2个基准数据库上的实验结果表明,所提出的MSDA方法的肯德尔排名相关系数(KRCC)、皮尔逊线性相关系数(PLCC)和斯皮尔曼秩次相关系数(SRCC)指标分别比对比方法中最优方法提高4.1%、1.8%和4.5%。

     

  • 图 1  重定向操作方法示例

    Figure 1.  Examples of retargeting operation method

    图 2  边缘组检测结果

    Figure 2.  Edge group detection results

    图 3  脸部块检测结果

    Figure 3.  Face block detection results

    图 4  后向配准示例

    Figure 4.  An example of backward registration

    图 5  VAF示例

    Figure 5.  An example of VAF

    图 6  不同λ值对实验结果的影响

    Figure 6.  Influence of different λ values on experimental results

    表  1  MIT数据库性能对比

    Table  1.   Performance comparison on MIT database

    方法 KRCC KRCC均值 KRCC标准差 p-val
    线条 人脸 前景物体 纹理 几何结构 对称结构
    BDS 0.040 0.190 0.167 0.060 -0.004 -0.012 0.083 0.268 0.017
    SIFTflow 0.097 0.252 0.218 0.161 0.085 0.071 0.145 0.262 0.031
    EMD 0.220 0.262 0.226 0.107 0.237 0.500 0.251 0.272 1×10-5
    CSim 0.097 0.290 0.293 0.161 0.053 0.150 0.164 0.263 0.028
    PGDIL 0.431 0.390 0.389 0.286 0.438 0.523 0.415 0.296 6×10-10
    ARS 0.463 0.519 0.444 0.330 0.505 0.464 0.452 0.283 1×10-11
    MLF 0.486 0.605 0.544 0.384 0.536 0.536 0.512 0.251 1×10-14
    MSDA 0.511 0.633 0.539 0.455 0.571 0.535 0.533 0.265 9×10-21
    下载: 导出CSV

    表  2  MIT数据库特征分析

    Table  2.   Feature analysis on MIT database

    方法 线条 人脸 前景物体 纹理 几何结构 对称结构 KRCC均值 KRCC标准差
    QARS+QEGS+QFBS 0.503 0.614 0.532 0.420 0.554 0.500 0.525 0.260
    QIAR8+QEGS+QFBS 0.506 0.610 0.456 0.528 0.571 0.512 0.527 0.269
    QIAR16+QEGS+QFBS 0.503 0.643 0.455 0.552 0.558 0.512 0.531 0.267
    MSDA 0.511 0.633 0.539 0.455 0.571 0.535 0.533 0.265
    下载: 导出CSV

    表  3  CUHK数据库性能对比

    Table  3.   Performance comparison on CUHK database

    方法 PLCC SRCC RMSE OR
    BDS 0.289 6 0.288 7 12.922 0.216 4
    SIFTflow 0.314 1 0.289 9 12.817 0.142 6
    EMD 0.276 0 0.290 4 12.977 0.169 6
    CSim 0.437 4 0.566 2 12.141 0.152 0
    PGDIL 0.540 3 0.540 9 11.361 0.152 0
    ARS 0.683 5 0.669 3 9.855 0.070 2
    MLF 0.757 7 0.738 3 8.525 0.029 4
    MSDA 0.771 3 0.771 7 8.593 0.035 0
    下载: 导出CSV

    表  4  CUHK数据库特征分析

    Table  4.   Feature analysis on CUHK database

    方法 PLCC SRCC RMSE OR
    QARS+QEGS+QFBS 0.761 0 0.758 5 8.759 6 0.046 8
    QIAR8+QEGS+QFBS 0.763 9 0.769 4 8.713 0 0.040 9
    QIAR16+QEGS+QFBS 0.770 9 0.766 3 8.599 0.040 9
    MSDA 0.771 3 0.771 7 8.593 0.035 0
    下载: 导出CSV

    表  5  MIT数据库不同块尺度特征组合

    Table  5.   Different block scale feature combinations on MIT database

    组合 KRCC均值 KRCC标准差
    QIAR8+QIAR16 0.533 0.265
    QIAR8+QIAR32 0.529 0.260
    QIAR16+QIAR32 0.525 0.267
    下载: 导出CSV

    表  6  CUHK数据库不同块尺度特征组合

    Table  6.   Different block scale feature combinations on CUHK database

    组合 PLCC SRCC RMSE OR
    QIAR8+QIAR16 0.771 3 0.771 7 8.593 0 0.035 0
    QIAR8+QIAR32 0.754 1 0.753 7 8.865 8 0.040 9
    QIAR16+QIAR32 0.767 7 0.766 6 8.652 2 0.035 0
    下载: 导出CSV

    表  7  MIT数据库不同显著性检测算法实验结果对比

    Table  7.   Comparison of experimental results of detection algorithms with different saliency on MIT database

    组合 KRCC均值 KRCC标准差
    VAF[13] 0.533 0.265
    CPD[26] 0.456 0.314
    DCTS[15] 0.523 0.231
    下载: 导出CSV

    表  8  CUHK数据库不同显著性检测算法实验结果对比

    Table  8.   Comparison of experimental results of detection algorithms with different saliency on CUHK database

    组合 PLCC SRCC RMSE OR
    VAF[13] 0.771 3 0.771 7 8.593 0 0.035 0
    CPD[26] 0.746 9 0.749 4 8.978 1 0.046 8
    DCTS[15] 0.733 3 0.725 6 9.179 3 0.052 6
    下载: 导出CSV
  • [1] RUBINSTEIN M, SHAMIR A, AVIDAN S.Multi-operator media retargeting[J].ACM Transactions on Graphics, 2009, 28(3):23. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0211571020/
    [2] AVIDAN S, SHAMIR A.Seam carving for content-aware image resizing[J].ACM Transactions on Graphics, 2007, 26(3):10. doi: 10.1145/1276377.1276390
    [3] PRITCH Y, KAV-VENAKI E, PELEG S.Shift-map image editing[C]//IEEE 12th International Conference on Computer Vision.Piscataway, NJ: IEEE Press, 2009: 151-158.
    [4] WANG Y S, TAI C L, SORKINE O, et al.Optimized scale-and-stretch for image resizing[J].ACM Transactions on Graphics, 2008, 27(5):118. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1b3e06a85d52e7da49bb9107984b1852
    [5] KRÄHENBVHL P, LANG M, HORNUNG A, et al.A system for retargeting of streaming video[J].ACM Transactions on Graphics, 2008, 28(5):126. doi: 10.1038-clpt.2011.14/
    [6] WOLF L, GUTTMANN M, COHEN-OR D.Non-homogeneous content-driven video-retargeting[C]//IEEE 11th International Conference on Computer Vision.Piscataway, NJ: IEEE Press, 2007: 1-6.
    [7] RUBINSTEIN M, GUTIERREZ D, SORKINE O, et al.A comparative study of image retargeting[J].ACM Transactions on Graphics, 2010, 29(6):160. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c023cf2f49e97770db9b400f90de92bc
    [8] MA L, LIN W, DENG C, et al.Image retargeting quality assessment:A study of subjective scores and objective metrics[J].IEEE Journal of Selected Topics in Signal Processing, 2012, 6(6):626-639. doi: 10.1109/JSTSP.2012.2211996
    [9] SIMAKOV D, CASPI Y, SHECHTMAN E, et al.Summarizing visual data using bidirectional similarity[C]//IEEE Conference on Computer Vision and Pattern Recognition.Piscataway, NJ: IEEE Press, 2008: 1-8.
    [10] LIU Y J, LUO X, XUAN Y M, et al.Image retargeting quality assessment[J].Computer Graphics Forum, 2011, 30(2):583-592. doi: 10.1111/j.1467-8659.2011.01881.x
    [11] ZHANG Y, FANG Y, LIN W, et al.Backward registration based aspect ratio similarity for image retargeting quality assessment[J].IEEE Transactions on Image Processing, 2016, 25(9):4286-4297. doi: 10.1109/TIP.2016.2585884
    [12] ZHANG Y, LIN W, LI Q, et al.Multiple-level feature-based measure for retargeted image quality[J].IEEE Transactions on Image Processing, 2018, 27(1):451-463. http://cn.bing.com/academic/profile?id=5f76e0c196e9e0ce92cefe712625c044&encoded=0&v=paper_preview&mkt=zh-cn
    [13] ZHANG S, NIU Y Z, LIN J W, et al.Visual attention fusion framework for image retargeting quality assessment[J].IOP Conference Series:Earth and Environmental Science, 2019, 234(1):12-64. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=IOP_9490483
    [14] CHEN Z, LIN J, LIAO N, et al.Full reference quality assessment for image retargeting based on natural scene statistics modeling and bi-directional saliency similarity[J].IEEE Transactions on Image Processing, 2017, 26(11):5138-5148. doi: 10.1109/TIP.2017.2736422
    [15] FANG Y, CHEN Z, LIN W, et al.Saliency detection in the compressed domain for adaptive image retargeting[J].IEEE Transactions on Image Processing, 2012, 21(9):3888-3901. doi: 10.1109/TIP.2012.2199126
    [16] QIN Y, LU H, XU Y, et al.Saliency detection via cellular automata[C]//IEEE Conference on Computer Vision and Pattern Recognition.Piscataway, NJ: IEEE Press, 2015: 110-119.
    [17] JOACHIMS T.Training linear SVMs in linear time[C]//ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.New York: ACM, 2006: 217-226.
    [18] LIU C, YUEN J, TORRALBA A.SIFT flow:Dense correspondence across scenes and its applications[J].IEEE Transactions on Pattern Analysis & Machine Intelligence, 2010, 33(5):978-994. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0224487781/
    [19] PELE O, WERMAN M.Fast and robust earth mover's distances[C]//IEEE 12th International Conference on Computer Vision.Piscataway, NJ: IEEE Press, 2009: 460-467.
    [20] HSU C C, LIN C W, FANG Y, et al.Objective quality assessment for image retargeting based on perceptual geometric distortion and information loss[J].IEEE Journal of Selected Topics in Signal Processing, 2014, 8(3):377-389. doi: 10.1109/JSTSP.2014.2311884
    [21] KENDALL M G.A new measure of rank correlation[J].Biometrika, 1938, 30(1):81-93. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1305.2038
    [22] DONG W, ZHOU N, PAUL J C, et al.Optimized image resizing using seam carving and scaling[J].ACM Transactions on Graphics, 2009, 28(5):125. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0216027791/
    [23] KARNI Z, FREEDMAN D, GOTSMAN C.Energy-based image deformation[J].Computer Graphics Forum, 2009, 28(5):1257-1268. doi: 10.1111/j.1467-8659.2009.01503.x
    [24] WANG Z, LU L, BOVIK A C.Video quality assessment based on structural distortion measurement[J].Signal Processing:Image Communication, 2004, 19(2):121-132. doi: 10.1016/S0923-5965(03)00076-6
    [25] SHEIKH H R, SABIR M F, BOVIK A C.A statistical evaluation of recent full reference image quality assessment algorithms[J].IEEE Transactions on Image Processing, 2006, 15(11):3440-3451. doi: 10.1109/TIP.2006.881959
    [26] WU Z, SU L, HUANG Q M.Cascaded partial decoder for fast and accurate salient object detection[EB/OL].(2018-04-18)[2019-07-09].https://arxiv.org/abs/1904.08739?context=cs.CV.
  • 加载中
图(6) / 表(8)
计量
  • 文章访问数:  649
  • HTML全文浏览量:  37
  • PDF下载量:  280
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-09
  • 录用日期:  2019-08-03
  • 网络出版日期:  2019-12-20

目录

    /

    返回文章
    返回
    常见问答