留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于DCNN和全连接CRF的舌图像分割算法

张新峰 郭宇桐 蔡轶珩 孙萌

张新峰, 郭宇桐, 蔡轶珩, 等 . 基于DCNN和全连接CRF的舌图像分割算法[J]. 北京航空航天大学学报, 2019, 45(12): 2364-2374. doi: 10.13700/j.bh.1001-5965.2019.0370
引用本文: 张新峰, 郭宇桐, 蔡轶珩, 等 . 基于DCNN和全连接CRF的舌图像分割算法[J]. 北京航空航天大学学报, 2019, 45(12): 2364-2374. doi: 10.13700/j.bh.1001-5965.2019.0370
ZHANG Xinfeng, GUO Yutong, CAI Yiheng, et al. Tongue image segmentation algorithm based on deep convolutional neural network and fully conditional random fields[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(12): 2364-2374. doi: 10.13700/j.bh.1001-5965.2019.0370(in Chinese)
Citation: ZHANG Xinfeng, GUO Yutong, CAI Yiheng, et al. Tongue image segmentation algorithm based on deep convolutional neural network and fully conditional random fields[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(12): 2364-2374. doi: 10.13700/j.bh.1001-5965.2019.0370(in Chinese)

基于DCNN和全连接CRF的舌图像分割算法

doi: 10.13700/j.bh.1001-5965.2019.0370
基金项目: 

国家重点研发计划 2017YFC1703300

详细信息
    作者简介:

    张新峰   男, 博士, 副教授, 硕士生导师。主要研究方向:图像处理、模式识别、机器学习

    郭宇桐   男, 硕士研究生。主要研究方向:图像处理、深度学习、语义分割

    通讯作者:

    张新峰. E-mail: zxf@bjut.edu.cn

  • 中图分类号: TN911.73

Tongue image segmentation algorithm based on deep convolutional neural network and fully conditional random fields

Funds: 

National Key R & D Program of China 2017YFC1703300

More Information
  • 摘要:

    针对中医舌诊中舌体分割不准确、分割速度较慢且需要人工标定候选区域等问题,提出了一种端到端的舌图像分割算法。与传统舌图像分割算法相比,所提算法可以得到更为准确的分割结果,并且不需要人工操作。首先,使用孔卷积算法,可以在不增加参数的条件下扩大网络的特征图谱。其次,使用孔卷积空间金字塔池化(ASPP)模块,令网络通过不同的感受野学习舌图像的多尺度特征。最后,将深度卷积神经网络(DCNN)和全连接的条件随机场(CRF)相结合,细化分割后的舌体边缘。实验结果表明:所提算法优于传统舌图像分割算法和主流的深度卷积神经网络,具有较高的分割精度,平均交并比达到了95.41%。

     

  • 图 1  舌图像分割算法网络结构

    Figure 1.  Network structure of tongue image segmentation algorithm

    图 2  一维孔卷积示意图

    Figure 2.  Schematic diagram of 1D atrous convolution

    图 3  ASPP模块

    Figure 3.  ASPP module

    图 4  数据集原始图像和人工标注的标签

    Figure 4.  Original images in dataset with corresponding artificial segmentation marks

    图 5  不同尺寸和参数的孔卷积MIOU结果

    Figure 5.  MIOU of atrous convolution with different sizes and parameters

    图 6  不同参数的ASPP模块MIOU结果

    Figure 6.  MIOU of ASPP module with different parameters

    图 7  舌图像的分割结果示例

    Figure 7.  Examples of tongue image segmentation results

    图 8  舌体不完整的分割结果示例

    Figure 8.  Examples of segmentation results of tongue defect

    图 9  包含嘴唇部分的舌图像分割结果示例

    Figure 9.  Examples of segmentation results of tongue image containing lips

    图 10  不同算法的舌图像分割结果示例

    Figure 10.  Examples of tongue image segmentation results by different algorithms

    表  1  三个数据集的图片数量

    Table  1.   Number of images on three datasets

    数据集 类型 图片数量
    PASCAL VOC 2012 训练 10 582
    验证 1 449
    测试 1 456
    Tongue dataset 1 训练 1 440
    测试 250
    Tongue dataset 2 训练 160
    测试 40
    下载: 导出CSV

    表  2  不同尺寸和参数的孔卷积对网络性能的影响

    Table  2.   Effect of atrous convolution with different size and parameters on network performance

    核尺寸 r 参数数量/106 时间/s MIOU/%
    7×7 2 134.3 1.57 93.29
    5×5 2 94.6 2.47 89.16
    3×3 2 20.5 4.92 83.47
    3×3 4 20.5 4.92 86.13
    3×3 6 20.5 4.92 90.06
    3×3 8 20.5 4.92 93.27
    下载: 导出CSV

    表  3  不同参数的ASPP模块对网络性能的影响

    Table  3.   Effect of different parameters of ASPP module on network performance

    方法 各通道参数 MIOU/%
    单分支 8 93.27
    ASPP-2 (2, 4, 6, 8) 94.18
    ASPP-4 (4, 8, 12, 16) 95.41
    ASPP-6 (6, 12, 18, 24) 94.79
    ASPP-8 (8, 16, 24, 32) 94.57
    下载: 导出CSV

    表  4  不同模块对网络性能的影响

    Table  4.   Effect of different modules on network performance

    单分支 ASPP CRF MIOU/%
    Tongue dataset 1 Tongue dataset 2
    92.48 90.87
    93.27 91.21
    94.36 92.54
    95.41 93.75
    下载: 导出CSV

    表  5  不同算法在舌图像数据集上的分割结果

    Table  5.   Segmentation results on tongue image dataset by different algorithms

    算法 Tongue dataset 1 Tongue dataset 2
    PA/% MPA/% MIOU/% 时间/s PA/% MPA/% MIOU/% 时间/s
    GrabCut[7] 96.22 95.47 83.89 7.25 96.63 95.38 86.81 6.87
    Snake[4] 97.15 96.39 90.43 6.33 98.50 96.71 93.54 6.57
    FCN-8s[18] 97.36 96.04 91.37 0.37 96.84 95.27 90.36 0.31
    U-net[27] 98.65 96.88 93.69 0.68 97.83 96.19 92.17 0.64
    SegNet[20] 99.71 98.09 94.81 0.48 98.02 96.51 92.63 0.42
    本文算法 99.85 98.29 95.41 0.83 98.97 97.60 93.75 0.75
    下载: 导出CSV
  • [1] SHEN L S, WANG A M, WEI B G, et al.Image analysis for tongue characterization[J].Acta Electronica Sinica, 2001, 12(3):317-323. http://cn.bing.com/academic/profile?id=68f267c45b0201dfc3a1c378217fa924&encoded=0&v=paper_preview&mkt=zh-cn
    [2] 张灵, 秦鉴.基于灰度投影和阈值自动选取的舌像分割方法[J].中国组织工程研究与临床康复, 2010, 14(9):1638-1641. doi: 10.3969/j.issn.1673-8225.2010.09.027

    ZHANG L, QIN J.Tongue-image segmentation based on gray projection and threshold-adaptive method[J].Journal of Clinical Rehabilitative Tissue Engineering Research, 2010, 14(9):1638-1641(in Chinese). doi: 10.3969/j.issn.1673-8225.2010.09.027
    [3] 李丹霞, 韦玉科.基于自适应阈值的舌像分割方法[J].计算机技术与发展, 2011, 21(9):63-65. doi: 10.3969/j.issn.1673-629X.2011.09.016

    LI D X, WEI Y K.Tongue image segmentation method based on adaptive thresholds[J].Computer Technology & Development, 2011, 21(9):63-65(in Chinese). doi: 10.3969/j.issn.1673-629X.2011.09.016
    [4] KASS M, WITKIN A, TERZOPOULOS D.Snakes:Active, contour models[J].International Journal of Computer Vision, 1988, 1(4):321-331. doi: 10.1007/BF00133570
    [5] 傅之成, 李晓强, 李福凤.基于径向边缘检测和Snake模型的舌像分割[J].中国图象图形学报, 2019, 14(4):688-693. http://d.old.wanfangdata.com.cn/Periodical/zgtxtxxb-a200904020

    FU Z C, LI X Q, LI F F.Tongue image segmentation based on snake model and radial edge detection[J].Journal of Image & Graphics, 2009, 14(4):688-693(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/zgtxtxxb-a200904020
    [6] LI Q L, XUE Y Q, WANG J Y, et al.Automated tongue segmentation algorithm based on hyperspectral image[J].Journal of Infrared & Millimeter Waves, 2007, 26(1):77-80. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hwyhmb200701018
    [7] ROTHER C, KOLMOGOROV V, BLAKE A.GrabCut:Interactive foreground extraction using iterated graph cuts[J].ACM Transactions on Graphics, 2004, 23(3):309-314. doi: 10.1145/1015706.1015720
    [8] 韦玉科, 范鹏, 曾贵.改进的GrabCut方法在舌诊系统中的应用[J].传感器与微系统, 2014, 33(10):157-160. http://d.old.wanfangdata.com.cn/Periodical/cgqjs201410045

    WEI Y K, FAN P, ZENG G.Application of improved GrabCut method in tongue diagnosis system[J].Transducer & Microsystem Technologies, 2014, 33(10):157-160(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/cgqjs201410045
    [9] 陈善超, 符红光, 王颖.改进的一种图论分割方法在舌像分割中的应用[J].计算机工程与应用, 2012, 48(5):201-203. doi: 10.3778/j.issn.1002-8331.2012.05.058

    CHEN S C, FU H G, WANG Y.Application of improved graph theory image segmentation algorithm in tongue image segmentation[J].Computer Engineering & Applications, 2012, 48(5):201-203(in Chinese). doi: 10.3778/j.issn.1002-8331.2012.05.058
    [10] GUO J Y, YANG Y K, WU Q W, et al.Adaptive active contour model based automatic tongue image segmentation[C]//International Congress on Image and Signal Processing, Biomedical Engineering and Informatics, 2017: 1386-1390. https://www.researchgate.net/publication/313807601_Adaptive_active_contour_model_based_automatic_tongue_image_segmentation
    [11] SHI M J, LI G Z, LI F F.C2G2FSnake:Automatic tongue image segmentation utilizing prior knowledge[J].Science China:Information Sciences, 2013, 56(9):1-14. http://www.cnki.com.cn/Article/CJFDTotal-JFXG201309014.htm
    [12] LIN B Q, XIE J W, LI C H.Deeptongue: Tongue segmentation via resnet[C]//IEEE International Conference on Acoustics, Speech and Signal Processing.Piscataway, NJ: IEEE Press, 2018: 1035-1039.
    [13] KRIZHEVSKY A, SUTSKEVER I, HINTON G.ImageNet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems, 2013: 1097-1105. https://www.researchgate.net/publication/267960550_ImageNet_Classification_with_Deep_Convolutional_Neural_Networks
    [14] SIMONYAN K, ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[EB/OL].(2014-09-04)[2019-01-28].https://arxiv.org/abs/1409.1556.
    [15] GIRSHICK R, DONAHUE J, DARRELL T, et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//IEEE Conference on Computer Vision and Pattern Recognition.Piscataway, NJ: IEEE Press, 2014: 580-587.
    [16] GIRSHICK R.Fast R-CNN[C]//IEEE International Conference on Computer Vision.Piscataway, NJ: IEEE Press, 2015: 15801732.
    [17] REN S Q, HE K M, GIRSHICK R, et al.Faster R-CNN:Towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149. doi: 10.1109/TPAMI.2016.2577031
    [18] SHELHAMER E, JONATHAN L, TREVOR D.Fully convolutional networks for semantic segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4):640-651. doi: 10.1109/TPAMI.2016.2572683
    [19] NOH H, HONG S, HAN B.Learning deconvolution network for semantic segmentation[C]//IEEE International Conference on Computer Vision.Piscataway, NJ: IEEE Press, 2015: 1520-1528.
    [20] BADRINARAYANAN V, KENDALL A, CIPOLLA R.SegNet:A deep convolutional encoder-decoder architecture for image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12):2481-2495. doi: 10.1109/TPAMI.2016.2644615
    [21] CHEN L C, PAPANDREOU G, KOKKINOS I, et al.DeepLab:Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4):834-848. doi: 10.1109/TPAMI.2017.2699184
    [22] LI J, XU B C, BAN X J.A tongue image segmentation method based on enhanced HSV convolutional neural network[C]//International Conference on Cooperative Design, Visualization and Engineering.Berlin: Springer, 2017: 252-260. doi: 10.1007/978-3-319-66805-5_32
    [23] QU P L, ZHANG H, ZHUO L, et al.Automatic tongue image segmentation for traditional Chinese medicine using deep neural network[C]//Intelligent Computing Theories and Application.Berlin: Springer, 2017: 247-259. doi: 10.1007%2F978-3-319-63309-1_23
    [24] HOSCHNEIDER M, KRONLAND-MARTINET R, MORLET J, et al.A real-time algorithm for signal analysis with the help of the wavelet transform[C]//Wavelets: Time-Frequency Methods Phase Space, 1989: 289-297. doi: 10.1007%2F978-3-642-75988-8_28
    [25] PHILIPP K, KOLTUN V.Efficient inference in fully connected CRFs with Gaussian edge potentials[J].Advances in Neural Information Processing Systems, 2011, 24(1):109-117. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1210.5644
    [26] HARIHARAN B, ARBELAEZ P, BOURDEV L, et al.Semantic contours from inverse detectors[C]//IEEE International Conference on Computer Vision.Piscataway, NJ: IEEE Press, 2011: 991-998. https://ieeexplore.ieee.org/document/6126343
    [27] RONNEBERGER O, FISCHER P, BROX T.U-net: Convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention.Berlin: Springer, 2015: 234-241. doi: 10.1007/978-3-319-24574-4_28
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  1172
  • HTML全文浏览量:  225
  • PDF下载量:  754
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-09
  • 录用日期:  2019-08-14
  • 网络出版日期:  2019-12-20

目录

    /

    返回文章
    返回
    常见问答