留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于自适应注入模型的遥感图像融合方法

杨勇 卢航远 黄淑英 涂伟 李露奕

杨勇, 卢航远, 黄淑英, 等 . 基于自适应注入模型的遥感图像融合方法[J]. 北京航空航天大学学报, 2019, 45(12): 2351-2363. doi: 10.13700/j.bh.1001-5965.2019.0372
引用本文: 杨勇, 卢航远, 黄淑英, 等 . 基于自适应注入模型的遥感图像融合方法[J]. 北京航空航天大学学报, 2019, 45(12): 2351-2363. doi: 10.13700/j.bh.1001-5965.2019.0372
YANG Yong, LU Hangyuan, HUANG Shuying, et al. Remote sensing image fusion method based on adaptive injection model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(12): 2351-2363. doi: 10.13700/j.bh.1001-5965.2019.0372(in Chinese)
Citation: YANG Yong, LU Hangyuan, HUANG Shuying, et al. Remote sensing image fusion method based on adaptive injection model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(12): 2351-2363. doi: 10.13700/j.bh.1001-5965.2019.0372(in Chinese)

基于自适应注入模型的遥感图像融合方法

doi: 10.13700/j.bh.1001-5965.2019.0372
基金项目: 

国家自然科学基金 61662026

国家自然科学基金 61862030

江西省自然科学基金 20182BCB22006

江西省自然科学基金 20181BAB202010

江西省自然科学基金 20192ACB20002

江西省自然科学基金 20192ACBL21008

江西省教育厅科学技术研究项目 GJJ170312

江西省教育厅科学技术研究项目 GJJ170318

江西省研究生创新专项资金 YC2019-B094

江西省研究生创新专项资金 YC2018-B065

详细信息
    作者简介:

    杨勇   男, 博士, 教授, 博士生导师。主要研究方向:图像处理、模式识别

    卢航远   男, 博士研究生。主要研究方向:图像处理

    黄淑英   女, 博士, 副教授。主要研究方向:图像处理、机器学习

    涂伟   男, 博士研究生。主要研究方向:图像处理

    李露奕   女, 硕士研究生。主要研究方向:图像处理

    通讯作者:

    杨勇. E-mail: greatyangy@126.com

  • 中图分类号: TP391.41

Remote sensing image fusion method based on adaptive injection model

Funds: 

National Natural Science Foundation of China 61662026

National Natural Science Foundation of China 61862030

Natural Science Foundation of Jiangxi, China 20182BCB22006

Natural Science Foundation of Jiangxi, China 20181BAB202010

Natural Science Foundation of Jiangxi, China 20192ACB20002

Natural Science Foundation of Jiangxi, China 20192ACBL21008

Science Research Foundation of Education Bureau of Jiangxi Province, China GJJ170312

Science Research Foundation of Education Bureau of Jiangxi Province, China GJJ170318

Knowledge Innovation Fund for the Graduate Students of Jiangxi Province YC2019-B094

Knowledge Innovation Fund for the Graduate Students of Jiangxi Province YC2018-B065

More Information
  • 摘要:

    遥感图像融合的目的是融合高光谱分辨率、低空间分辨率的多光谱(MS)图像和高空间分辨率、低光谱分辨率的全色(PAN)图像,得到高光谱分辨率与高空间分辨率的融合图像。遥感图像的注入模型中如何确定注入细节及注入系数是该技术研究的关键。针对注入细节优化,先通过模拟MS传感器的特性来定义一种多尺度高斯滤波器,再用该滤波器卷积PAN图像以提取细节,得到与MS图像高度相关的细节。针对注入系数优化,综合考虑光谱信息与细节信息提出一种自适应的注入量系数。为更好地保留边缘信息,提出一种新的边缘保持权重矩阵,实现光谱信息与空间的双保真。将优化后的注入系数与注入细节相乘注入到上采样后的MS图像中,得到融合结果。对所提方法进行性能分析,并在各卫星数据集上进行大量测试,与一些先进的遥感图像融合方法进行对比,实验结果表明,所提方法在主观与综合客观指标上都能达到最优。

     

  • 图 1  注入模型一般框架

    Figure 1.  Basic framework of injection model

    图 2  本文融合方法框架

    Figure 2.  Framework of proposed fusion method

    图 3  优化过程平均客观评价指标对比

    Figure 3.  Average objective evaluation indicator comparison of optimization steps

    图 4  边缘保持方法改进前后平均客观评价指标对比

    Figure 4.  Comparison of average objective evaluation indicators before and after improvement of edge preserving method

    图 5  QuickBird数据集遥感图像融合结果

    Figure 5.  Fusion results of remote sensing images from QuickBird dataset

    图 6  WorldView-2数据集遥感图像融合结果

    Figure 6.  Fusion results of remote sensing images from WorldView-2 dataset

    图 7  pleiades数据集遥感图像融合结果

    Figure 7.  Fusion results of remote sensing images from pleiades dataset

    图 8  IKONOS数据集真实图像融合结果

    Figure 8.  Fusion results of real images from IKONOS dataset

    图 9  QuickBird数据集真实图像融合结果

    Figure 9.  Fusion results of real images from QuickBird dataset

    表  1  图 5对应的遥感图像融合结果客观评价指标

    Table  1.   Objective evaluation indicators of remote sensing image fusion results in Fig. 5

    方法 CC(1) UIQI(1) RASE(0) RMSE(0) SAM(0) ERGAS(0)
    AWLP 0.954 3 0.842 5 24.337 7 19.664 9 4.835 5 7.141 5
    BFLP 0.961 5 0.848 1 21.473 9 17.350 9 2.944 6 6.763 3
    CBD 0.974 0 0.861 9 18.325 4 14.806 9 5.320 4 5.191 5
    IMG 0.946 8 0.842 5 26.540 4 21.444 7 3.506 1 8.677 0
    MMMT 0.962 9 0.844 2 21.438 4 17.322 2 5.585 2 5.609 1
    ASIMP 0.977 3 0.862 4 17.356 5 14.024 1 5.107 4 4.722 1
    本文 0.982 9 0.884 3 14.008 4 11.318 8 2.951 5 3.964 6
    下载: 导出CSV

    表  2  图 6对应的遥感图像融合结果客观评价指标

    Table  2.   Objective evaluation indicators of remote sensing image fusion results in Fig. 6

    方法 CC(1) UIQI(1) RASE(0) RMSE(0) SAM(0) ERGAS(0)
    AWLP 0.908 7 0.846 3 23.071 4 25.239 6 5.531 1 5.629 8
    BFLP 0.919 0 0.850 9 20.849 9 22.809 3 5.185 0 5.137 5
    CBD 0.948 3 0.855 1 17.116 3 18.724 8 5.660 9 4.210 8
    IMG 0.916 7 0.855 8 20.678 2 22.621 5 5.179 1 5.177 6
    MMMT 0.936 8 0.840 1 17.873 8 19.553 6 6.018 0 4.468 8
    ASIMP 0.957 6 0.861 9 14.912 1 16.313 6 4.966 9 3.712 6
    本文 0.957 9 0.862 4 14.592 5 15.963 8 4.775 3.639 7
    下载: 导出CSV

    表  3  图 7对应的遥感图像融合结果客观评价指标

    Table  3.   Objective evaluation indicators of remote sensing image fusion results in Fig. 7

    方法 CC(1) UIQI(1) RASE(0) RMSE(0) SAM(0) ERGAS(0)
    AWLP 0.922 7 0.907 3 19.585 9 20.150 3 4.060 0 4.847 1
    BFLP 0.926 7 0.903 4 21.395 9 22.012 5 3.726 1 5.906 0
    CBD 0.907 5 0.892 4 21.936 6 22.568 8 4.207 2 5.509 9
    IMG 0.927 8 0.909 1 19.256 1 19.811 0 3.222 4 4.840 1
    MMMT 0.923 2 0.909 2 17.370 1 17.870 6 4.153 9 4.347 1
    ASIMP 0.939 0 0.918 1 16.884 7 17.371 3 3.573 3 4.251 1
    本文 0.940 5 0.913 3 15.644 5 16.095 3 3.170 0 3.934 0
    下载: 导出CSV

    表  4  80组遥感图像仿真实验的平均客观评价指标

    Table  4.   Average objective evaluation indicators of simulation experiments from 80 groups of remote sensing images

    方法 CC(1) UIQI(1) RASE(0) RMSE(0) SAM(0) ERGAS(0)
    AWLP 0.910 5 0.865 7 21.373 0 14.326 7 3.718 4 5.261 6
    BFLP 0.905 4 0.827 9 29.250 6 18.965 0 3.900 0 6.973 7
    CBD 0.903 3 0.858 1 21.788 5 14.848 6 4.289 0 5.579 6
    IMG 0.904 9 0.853 8 22.586 3 15.437 3 3.394 0 5.667 3
    MMMT 0.914 7 0.873 3 18.287 9 12.496 2 3.841 8 4.679 7
    ASIMP 0.917 4 0.871 7 19.916 1 13.270 7 3.845 1 5.072 7
    本文 0.921 5 0.881 5 18.244 7 12.333 0 3.303 5 4.638 0
    注:“——”表示平均值。
    下载: 导出CSV

    表  5  图 8对应的真实图像定量评价结果

    Table  5.   Quantitative evaluation results of real image in Fig. 8

    方法 Dλ(0) Ds(0) QNR(1)
    AWLP 0.040 3 0.052 8 0.909 1
    BFLP 0.039 4 0.055 8 0.906 9
    CBD 0.039 6 0.051 3 0.911 1
    IMG 0.050 5 0.056 2 0.896 1
    MMMT 0.043 9 0.071 0 0.888 2
    ASIMP 0.035 5 0.048 1 0.918 1
    本文 0.028 1 0.049 0 0.924 3
    下载: 导出CSV

    表  6  图 9对应的真实图像定量评价结果

    Table  6.   Quantitative evaluation results of real image in Fig. 9

    方法 Dλ(0) Ds(0) QNR(1)
    AWLP 0.022 0 0.040 9 0.938 1
    BFLP 0.013 9 0.042 4 0.944 3
    CBD 0.026 0 0.043 9 0.931 2
    IMG 0.020 4 0.046 6 0.934 0
    MMMT 0.019 6 0.043 4 0.937 8
    ASIMP 0.019 4 0.040 1 0.941 2
    本文 0.011 7 0.038 8 0.949 9
    下载: 导出CSV

    表  7  50组真实图像的平均定量评价结果

    Table  7.   Average quantitative evaluation results of 50 groups of real images

    方法 QNR(1)
    AWLP 0.018 4 0.043 1 0.939 4
    BFLP 0.018 0 0.042 1 0.940 8
    CBD 0.020 9 0.043 0 0.937 1
    IMG 0.024 5 0.048 4 0.928 4
    MMMT 0.018 6 0.047 3 0.935 1
    ASIMP 0.024 9 0.047 8 0.930 6
    本文 0.013 8 0.040 8 0.946 0
    注:“——”表示平均值。
    下载: 导出CSV
  • [1] GHASSEMIAN H.A review of remote sensing image fusion methods[J]. Information Fusion, 2016, 32:75-89. doi: 10.1016/j.inffus.2016.03.003
    [2] GEMINE V, PAOLO A, ROCCO R, et al.Pansharpening based on deconvolution for multiband filter estimation[J].IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(1):540-552. doi: 10.1109/TGRS.2018.2858288
    [3] MALPICA J A.Hue adjustment to IHS pan-sharpened IKONOS imagery for vegetation enhancement[J].IEEE Geoscience and Remote Sensing Letters, 2007, 4(1):27-31. doi: 10.1109/LGRS.2006.883523
    [4] PSJR C, SIDES S C, ANDERSON J A.Comparison of three different methods to merge multiresolution and multispectral data:Landsat TM and SPOT panchromatic[J].Photogrammetric Engineering & Remote Sensing, 1991, 57(3):265-303. http://cn.bing.com/academic/profile?id=32f78ce8535f3ce1bb1f202d3705a7b3&encoded=0&v=paper_preview&mkt=zh-cn
    [5] LABEN C A, BROWER B V.Process for enhancing the spatial resolution of multispectral imagery using pan-sharpening: U.S.6011875 A[P].2000-01-04.
    [6] MENG X C, SHEN H F, LI H F, et al.Review of the pansharpening methods for remote sensing images based on the idea of meta-analysis:Practical discussion and challenges[J].Information Fusion, 2019, 46:102-113. doi: 10.1016/j.inffus.2018.05.006
    [7] LI S, KWOK J T, WANG Y.Using the discrete wavelet frame transform to merge Landsat TM and SPOT panchromatic images[J].Information Fusion, 2002, 3(1):17-23. doi: 10.1016/S1566-2535(01)00037-9
    [8] NUNEZ J, OTAZU X, FORS O, et al.Multiresolution-based image fusion with additive wavelet decomposition[J].IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(3):1204-1211. doi: 10.1109/36.763274
    [9] CUNHA A L D, ZHOU J, DO M N.The nonsubsampled contourlet transform:Theory, design, and applications[J].IEEE Transactions on Image Processing, 2006, 15(10):3089-3101. doi: 10.1109/TIP.2006.877507
    [10] YIN M, LIU W, ZHAO X, et al.A novel image fusion algorithm based on nonsubsampled shearlet transform[J].Optik-International Journal for Light and Electron Optics, 2014, 125(10):2274-2282. doi: 10.1016/j.ijleo.2013.10.064
    [11] YANG Y, WAN W, HUANG S Y, et al.Remote sensing image fusion based on adaptive HIS and multiscale guided filter[J].IEEE Access, 2016, 4:4573-4582. doi: 10.1109/ACCESS.2016.2599403
    [12] YANG Y, WU L, HUANG S Y, et al.Compensation details-based injection model for remote sensing image fusion[J].IEEE Geoscience and Remote Sensing Letters, 2018, 15(5):734-738. doi: 10.1109/LGRS.2018.2810219
    [13] YANG Y, WU L, HUANG S Y, et al.Remote sensing image fusion based on adaptively weighted joint detail injection[J].IEEE Access, 2018, 6:6849-6864. doi: 10.1109/ACCESS.2018.2791574
    [14] GIUSEPPE M, DAVIDEC, LUISA V, et al.Pansharpening by convolutional neural networks[J].Remote Sensing, 2016, 8(7):594. doi: 10.3390/rs8070594
    [15] AIAZZI B, ALPARONE L, BARONTI S, et al.MTF-tailored multiscale fusion of high-resolution MS and pan imagery[J].Photogrammetric Engineering and Remote Sensing, 2006, 72(5):591-596. doi: 10.14358/PERS.72.5.591
    [16] VIVONE G, RESTAINO R, CHANUSSOT J.Full scale regression-based injection coefficients for panchromatic sharpening[J].IEEE Transactions on Image Processing, 2018, 27(7):3418-3431. doi: 10.1109/TIP.2018.2819501
    [17] YIN H, LI S.Pansharpening with multiscale normalized nonlocal means filter:A two-step approach[J].IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(10):5734-5745. doi: 10.1109/TGRS.2015.2429691
    [18] VIVONE G, ALPARONE L, CHANUSSOT J, et al.A critical comparison among pansharpening algorithms[J].IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(5):2565-2586. doi: 10.1109/TGRS.2014.2361734
    [19] RAHMANI S, STRAIT M, MERKURJEV D, et al.An adaptive IHS pan-sharpening method[J].IEEE Geoscience and Remote Sensing Letters, 2010, 7(4):746-750. doi: 10.1109/LGRS.2010.2046715
    [20] LEUNG Y, LIU J, ZHANG J.An improved adaptive intensity-hue-saturation method for the fusion of remote sensing images[J].IEEE Geoscience and Remote Sensing Letters, 2013, 11(5):985-989. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fc1cc43de2c9b14f8fbdc2db892dc1e9
    [21] HE K, SUN J, TANG X.Guided image filtering[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(6):1397-1409. doi: 10.1109/TPAMI.2012.213
    [22] 杨勇, 阙越, 黄淑英, 等.多视觉特征和引导滤波的鲁棒多聚焦图像融合[J].计算机辅助设计与图形学学报, 2017, 29(7):1324-1333. doi: 10.3969/j.issn.1003-9775.2017.07.019

    YANG Y, QUE Y, HUANG S Y, et al.Robust multifocus image fusion via multiple visual features and guided filtering[J].Journal of Computer-Aided Design & Computer Graphics, 2017, 29(7):1324-1333(in Chinese). doi: 10.3969/j.issn.1003-9775.2017.07.019
    [23] 敬忠良, 肖刚.图像融合:理论与应用[M].北京:高等教育出版社, 2007:160-172.

    JING Z L, XIAO G.Image fusion:Principle and application[M].Beijing:Higher Education Press, 2007:160-172(in Chinese).
    [24] YANG Y, WANG W G, HUANG S H, et al.Anovel pan-sharpening framework based on matting model and multiscale transform[J].Remote Sensing, 2017, 9(4):391-750. doi: 10.3390/rs9040391
    [25] YANG Y, WU L, HUANG S Y, et al.Pansharpening for multiband images with adaptive spectral-intensity modulation[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(9):3196-3208. doi: 10.1109/JSTARS.2018.2849011
    [26] WALD L, RANCHIN T, MANGOLINI M.Fusion of satellite images of different spatial resolutions:Assessing the quality of resulting images[J].Photogrammetric Engineering and Remote Sensing, 1997, 63(6):691-699. http://cn.bing.com/academic/profile?id=72dfcaea4793b5939cd13da01141c6b7&encoded=0&v=paper_preview&mkt=zh-cn
    [27] OTAZU X, GONZÁLEZ-AUDÍCANA M, FORS O, et al.Introduction of sensor spectral response into image fusion methods.Application to wavelet-based methods[J].IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(10):2376-2385. doi: 10.1109/TGRS.2005.856106
    [28] KAPLAN N H, ERER I.Bilateral filtering-based enhanced pansharpening of multispectral satellite images[J].IEEE Geoscience and Remote Sensing Letters, 2014, 11(11):1941-1945. doi: 10.1109/LGRS.2014.2314389
    [29] WANG Z, BOVIK A C.A universal image quality index[J].IEEE Signal Processing Letters, 2002, 9(3):81-84. doi: 10.1109/97.995823
    [30] YANG Y, TONG S, HUANG S Y, et al.Multifocus image fusion based on NSCT and focused area detection[J].IEEE Sensors Journal, 2015, 15(5):2824-2838. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c9013ea70ae3b0bbd28431b1a11d9f02
    [31] RANCHIN T, WALD L.Fusion of high spatial and spectral resolution images:The ARSIS concept and its implementation[J].Photogrammetric Engineering and Remote Sensing, 2000, 66(1):49-61. http://cn.bing.com/academic/profile?id=a562d5815c79f8c211ee34e00625c010&encoded=0&v=paper_preview&mkt=zh-cn
    [32] ALPARONE L, WALD L, CHANUSSOT J, et al.Comparison of pansharpening algorithms:Outcome of the 2006 GRSS data fusion contest[J].IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(10):3012-3021. doi: 10.1109/TGRS.2007.904923
    [33] WALD L.Quality of high resolution synthesized images: Is there a simple criterion [C]//Proceedings of the Third Conference on Fusion of Earth Data, 2000: 99-103.
    [34] ALPARONE L, AIAZZI B, BARONTI S, et al.Multispectral and panchromatic data fusion assessment without reference[J].Photogrammetric Engineering and Remote Sensing, 2008, 74(2):193-200. doi: 10.14358/PERS.74.2.193
  • 加载中
图(9) / 表(7)
计量
  • 文章访问数:  975
  • HTML全文浏览量:  72
  • PDF下载量:  321
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-09
  • 录用日期:  2019-08-18
  • 网络出版日期:  2019-12-20

目录

    /

    返回文章
    返回
    常见问答