留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

时空域上下文学习的视频多帧质量增强方法

佟骏超 吴熙林 丁丹丹

佟骏超, 吴熙林, 丁丹丹等 . 时空域上下文学习的视频多帧质量增强方法[J]. 北京航空航天大学学报, 2019, 45(12): 2506-2513. doi: 10.13700/j.bh.1001-5965.2019.0374
引用本文: 佟骏超, 吴熙林, 丁丹丹等 . 时空域上下文学习的视频多帧质量增强方法[J]. 北京航空航天大学学报, 2019, 45(12): 2506-2513. doi: 10.13700/j.bh.1001-5965.2019.0374
TONG Junchao, WU Xilin, DING Dandanet al. Video multi-frame quality enhancement method via spatial-temporal context learning[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(12): 2506-2513. doi: 10.13700/j.bh.1001-5965.2019.0374(in Chinese)
Citation: TONG Junchao, WU Xilin, DING Dandanet al. Video multi-frame quality enhancement method via spatial-temporal context learning[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(12): 2506-2513. doi: 10.13700/j.bh.1001-5965.2019.0374(in Chinese)

时空域上下文学习的视频多帧质量增强方法

doi: 10.13700/j.bh.1001-5965.2019.0374
基金项目: 

浙江省自然科学基金 LY20F010013

国家重点研发计划 2017YFB1002803

详细信息
    作者简介:

    佟骏超  男, 硕士研究生。主要研究方向:视频图像处理、视频编码

    丁丹丹   女, 博士, 讲师, 硕士生导师。主要研究方向:视频编码、视频图像处理

    通讯作者:

    丁丹丹, E-mail: DandanDing@hznu.edu.cn

  • 中图分类号: TP391

Video multi-frame quality enhancement method via spatial-temporal context learning

Funds: 

Natural Science Foundation of Zhejiang Province, China LY20F010013

National Key R & D Program of China 2017YFB1002803

More Information
  • 摘要:

    卷积神经网络(CNN)在视频增强方向取得了巨大的成功。现有的视频增强方法主要在空域探索图像内像素的相关性,忽略了连续帧之间的时域相似性。针对上述问题,提出一种基于时空域上下文学习的多帧质量增强方法(STMVE),即利用当前帧以及相邻多帧图像共同增强当前帧的质量。首先根据时域多帧图像直接预测得到当前帧的预测帧,然后利用预测帧对当前帧进行增强。其中,预测帧通过自适应可分离的卷积神经网络(ASCNN)得到;在后续增强中,设计了一种多帧卷积神经网络(MFCNN),利用早期融合架构来挖掘当前帧及其预测帧的时空域相关性,最终得到增强的当前帧。实验结果表明,所提出的STMVE方法在量化参数值37、32、27、22上,相对于H.265/HEVC,分别获得0.47、0.43、0.38、0.28 dB的性能增益;与多帧质量增强(MFQE)方法相比,平均获得0.17 dB的增益。

     

  • 图 1  时空域上下文学习的多帧质量增强方法

    Figure 1.  Approach for multi-frame quality enhancement using spatial-temporal context learning

    图 2  光流法(FlowNet 2.0)与ASCNN预处理得到的输出图像的主观图

    Figure 2.  Subjective quality comparison of output image preprocessed by optical flow method (FlowNet 2.0) and ASCNN

    图 3  早期融合网络结构及其内部每个残差块的结构

    Figure 3.  Structure of proposed early fusion network and structure of each residual block in it

    图 4  以图像组为单位对低质量图像进行增强

    Figure 4.  Enhancing low-quality images for each GOP

    图 5  直接融合网络和渐进融合网络与所提出的早期融合网络的对比

    Figure 5.  Comparison of direct fusion networks and slow fusion networks with proposed early fusion networks

    图 6  不同方法获得图像的主观质量对比

    Figure 6.  Subjective quality comparison of reconstructed pictures enhanced by different methods

    表  1  光流法(FlowNet 2.0)与ASCNN预处理时间对比

    Table  1.   Pre-processing time comparison of optical flow method (FlowNet 2.0) and ASCNN

    序列 分辨率 预处理时间/s
    FlowNet 2.0 ASCNN
    BQSquare 416×240 255 108
    PartyScene 832×480 1085 111
    BQMall 832×480 1144 104
    Johnny 1280×720 2203 116
    平均耗时 1172 110
    下载: 导出CSV

    表  2  多帧质量增强网络结构

    Table  2.   Structure of proposed quality enhancement network

    卷积层 滤波器大小 滤波器数量 步长 激活函数
    Conv 1/2/3 3×3 64 1 Relu
    Conv 4 1×1 64 1 Relu
    残差块×7 1×1 64 1 Relu
    3×3 64 1 Relu
    1×1 64 1 Relu
    Conv end 5×5 1 1
    下载: 导出CSV

    表  3  5种预处理方式所获得的PSNR性能指标对比

    Table  3.   PSNR performance indicator comparison by five pre-processing strategies  dB

    序列 H.265/HEVC FlowNet 2.0(t-2, t+2) ASCNN(t-2, t+2) FlowNet 2.0(t-2, t+2)+ASCNN (t-2, t+2) FlowNet 2.0(t-2, t+2)+ASCNN (t-1, t+1) ASCNN(t-2, t+2)+ASCNN(t-1, t+1)
    BQMall 31.00 31.35 31.38 31.20 31.23 31.46
    BasketballDrill 31.94 32.35 32.32 32.16 32.19 32.39
    FourPeople 35.59 36.23 36.20 36.00 36.04 36.32
    BQSquare 29.21 29.59 29.62 29.32 29.35 29.65
    平均值 31.94 32.38 32.38 32.17 32.20 32.46
    下载: 导出CSV

    表  4  三种网络结构的PSNR性能指标对比

    Table  4.   PSNR performance indicator comparison of three network structures  dB

    测试序列 直接融合 渐进融合 早期融合
    BQMall 31.39 31.42 31.46
    BasketballDrill 32.32 32.35 32.39
    RaceHousesC 29.36 29.38 29.41
    平均值 31.02 31.05 31.09
    下载: 导出CSV

    表  5  不同方法的PSNR性能指标对比

    Table  5.   Comparison of PSNR performance indicator among different methods dB

    量化参数 类别 测试序列 H.265/HEVC 单帧质量增强 STMVE方法 相对单帧的提升 相对H.265/HEVC的提升
    37 C BasketballDrill 31.94 32.14 32.39 0.25 0.45
    BQMall 31.00 31.17 31.46 0.29 0.46
    PartyScene 27.73 27.73 27.94 0.21 0.21
    RaceHorses 29.08 29.23 29.41 0.18 0.33
    D BasketballPass 31.79 32.02 32.37 0.35 0.58
    BlowingBubbles 29.19 29.30 29.51 0.21 0.32
    BQSquare 29.21 29.28 29.65 0.37 0.44
    RaceHorses 28.69 28.93 29.18 0.25 0.49
    E FourPeople 35.59 36.03 36.32 0.29 0.73
    Johnny 37.34 37.61 37.80 0.19 0.46
    KristenAndSara 36.77 37.21 37.43 0.22 0.66
    平均值 31.67 31.97 32.13 0.16 0.47
    32 平均值 34.31 34.59 34.74 0.15 0.43
    27 平均值 37.06 37.28 37.43 0.15 0.38
    22 平均值 39.89 40.06 40.17 0.11 0.28
    下载: 导出CSV

    表  6  STMVE方法与MFQE的PSNR性能指标对比

    Table  6.   PSNR performance indicator comparison between proposed method and MFQE dB

    测试序列(36帧) MFQE STMVE方法 ΔPSNR
    PartyScene 26.95 27.39 0.44
    BQMall 30.39 30.64 0.25
    Johnny 36.84 36.87 0.03
    BlowingBubbles 28.97 28.93 0.04
    平均值 30.79 30.96 0.17
    下载: 导出CSV
  • [1] CISCO.Cisco visual networking index: Global mobile data traffic forecast update[EB/OL]. (2019-02-18)[2019-07-08]. https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-738429.html.
    [2] DONG C, DENG Y, CHANGE LOY C, et al.Compression artifacts reduction by a deep convolutional network[C]//Proceedings of the IEEE International Conference on Computer Vision.Piscataway, NJ: IEEE Press, 2015: 576-584.
    [3] ZHANG K, ZUO W, CHEN Y, et al.Beyond a Gaussian denoiser:Residual learning of deep CNN for image denoising[J]. IEEE Transactions on Image Processing, 2017, 26(7):3142-3155. doi: 10.1109/TIP.2017.2662206
    [4] YANG R, XU M, WANG Z.Decoder-side HEVC quality enhancement with scalable convolutional neural network[C]//2017 IEEE International Conference on Multimedia and Expo(ICME).Piscataway, NJ: IEEE Press, 2017: 817-822.
    [5] YANG R, XU M, WANG Z, et al.Multi-frame quality enhancement for compressed video[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway, NJ: IEEE Press, 2018: 6664-6673.
    [6] NIKLAUS S, MAI L, LIU F.Video frame interpolation via adaptive separable convolution[C]//Proceedings of the IEEE International Conference on Computer Vision.Piscataway, NJ: IEEE Press, 2017: 261-270.
    [7] PARK W S, KIM M.CNN-based in-loop filtering for coding efficiency improvement[C]//2016 IEEE 12th Image, Video, and Multidimensional Signal Processing Workshop(IVMSP), 2016: 1-5.
    [8] JUNG C, JIAO L, QI H, et al.Image deblocking via sparse representation[J]. Signal Processing:Image Communication, 2012, 27(6):663-677. doi: 10.1016/j.image.2012.03.002
    [9] WANG Z, LIU D, CHANG S, et al.D3: Deep dual-domain based fast restoration of jpeg-compressed images[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway, NJ: IEEE Press, 2016: 2764-2772.
    [10] LI K, BARE B, YAN B.An efficient deep convolutional neural networks model for compressed image deblocking[C]//2017 IEEE International Conference on Multimedia and Expo (ICME).Piscataway, NJ: IEEE Press, 2017: 1320-1325.
    [11] LU G, OUYANG W, XU D, et al.Deep Kalman filtering network for video compression artifact reduction[C]//Proceedings of the European Conference on Computer Vision (ECCV).Berlin: Springer, 2018: 568-584.
    [12] DAI Y, LIU D, WU F.A convolutional neural network approach for post-processing in HEVC intra coding[C]//International Conference on Multimedia Modeling.Berlin: Springer, 2017: 28-39.
    [13] TSAI R.Multiframe image restoration and registration[J]. Advance Computer Visual and Image Processing, 1984, 11(2):317-339. http://d.old.wanfangdata.com.cn/Periodical/dbch201411011
    [14] PARK S C, PARK M K, KANG M G.Super-resolution image reconstruction:A technical overview[J]. IEEE Signal Processing Magazine, 2003, 20(3):21-36. doi: 10.1109/MSP.2003.1203207
    [15] HUANG Y, WANG W, WANG L.Video super-resolution via bidirectional recurrent convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4):1015-1028. doi: 10.1109/TPAMI.2017.2701380
    [16] LI D, WANG Z.Video superresolution via motion compensation and deep residual learning[J]. IEEE Transactions on Computational Imaging, 2017, 3(4):749-762. doi: 10.1109/TCI.2017.2671360
    [17] ILG E, MAYER N, SAIKIA T, et al.FlowNet 2.0: Evolution of optical flow estimation with deep networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway, NJ: IEEE Press, 2017: 2462-2470.
    [18] HE K, ZHANG X, REN S, et al.Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway, NJ: IEEE Press, 2016: 770-778.
  • 加载中
图(6) / 表(6)
计量
  • 文章访问数:  1121
  • HTML全文浏览量:  182
  • PDF下载量:  359
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-09
  • 录用日期:  2019-08-12
  • 网络出版日期:  2019-12-20

目录

    /

    返回文章
    返回
    常见问答