留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中国国画艺术美感特征分析与分类

湛颖 高妍 谢凌云

湛颖, 高妍, 谢凌云等 . 中国国画艺术美感特征分析与分类[J]. 北京航空航天大学学报, 2019, 45(12): 2514-2522. doi: 10.13700/j.bh.1001-5965.2019.0375
引用本文: 湛颖, 高妍, 谢凌云等 . 中国国画艺术美感特征分析与分类[J]. 北京航空航天大学学报, 2019, 45(12): 2514-2522. doi: 10.13700/j.bh.1001-5965.2019.0375
ZHAN Ying, GAO Yan, XIE Lingyunet al. Aesthetic feature analysis and classification of Chinese traditional painting[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(12): 2514-2522. doi: 10.13700/j.bh.1001-5965.2019.0375(in Chinese)
Citation: ZHAN Ying, GAO Yan, XIE Lingyunet al. Aesthetic feature analysis and classification of Chinese traditional painting[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(12): 2514-2522. doi: 10.13700/j.bh.1001-5965.2019.0375(in Chinese)

中国国画艺术美感特征分析与分类

doi: 10.13700/j.bh.1001-5965.2019.0375
基金项目: 

中央高校基本科研业务费专项资金 18CUCTJ086

详细信息
    作者简介:

    湛颖   女, 硕士研究生。主要研究方向:图像处理、视听交互

    高妍  女, 博士研究生。主要研究方向:心理声学、视听交互

    谢凌云  男, 博士, 副研究员, 硕士生导师。主要研究方向:感知计算、视听交互

    通讯作者:

    谢凌云, E-mail: xiely@cuc.edu.cn

  • 中图分类号: TP391.41

Aesthetic feature analysis and classification of Chinese traditional painting

Funds: 

the Fundamental Research Funds for the Central Universities 18CUCTJ086

More Information
  • 摘要:

    图像艺术美感自动分类是近年的热门研究领域,国画作为中国传统艺术文化的重要体现,其美感也极具研究价值。在5类美感标注的国画数据库基础上,进行了国画艺术美感自动分类研究和相关特征分析。经过特征提取和筛选,得到适用于美感分类的33个图像特征,并基于特征重要性建立了物理特征与艺术美感、美术技法之间的映射关系。同时使用该特征集在多种分类器上进行艺术美感自动识别,验证了国画艺术美感自动分类的可行性。结果表明,国画艺术美感分类的主要相关美术元素按重要性排序为:颜色、笔触、亮度和线条。

     

  • 图 1  美感特征分析总体框架

    Figure 1.  Framework of aesthetic feature analysis

    图 2  不同美感的绘画内容案例

    Figure 2.  Painting content examples of different aesthetics

    图 3  图像预处理流程

    Figure 3.  Image pre-processing flowchart

    图 4  边界区域划分

    Figure 4.  Partition of edges

    图 5  对比度区间[6]

    Figure 5.  Interval of contrast[6]

    图 6  特征筛选过程

    Figure 6.  Process of feature filtering

    图 7  国画美感分类的美术元素重要性

    Figure 7.  Importance of artistic element in aesthetic classification of Chinese traditional painting

    表  1  图画美感分类数量

    Table  1.   Number of paintings in each aesthetic classification

    美感 山水画 花鸟画 总数目
    气势美 110 1 111
    清幽美 44 9 53
    生机美 54 133 187
    雅致美 11 92 103
    萧瑟美 30 13 43
    无法分类 6 8 14
    总数目 255 256 511
    下载: 导出CSV

    表  2  有效特征及原理

    Table  2.   Effective features and theories

    特征 具体维度 美术或图像原理
    色相直方图 H4, H9, H14 颜色
    颜色简明度 Hs 颜色
    红色直方图 R7, R10 颜色
    绿色直方图 G6 颜色
    蓝色直方图 B10 颜色
    灰度直方图 Gr1, Gr4, Gr5, Gr12, Gr16 亮度、颜色
    对比度 C 亮度和颜色
    亮度直方图 V2, V3, V5 亮度
    暗通道 D2 亮度
    图像模糊度 B 模糊度、笔触
    邻域相似性 N3, N4, N7, N10, N11, N12, N16, N17, N18, N24 笔触
    直线段个数 L 线条、笔触
    边界复杂度 E9, E10 线条、构图
    显著性图样 S 视觉注意、亮度
    下载: 导出CSV

    表  3  各美感有效特征及原理

    Table  3.   Effective features and theories for each item of aesthetics

    特征 气势美 清幽美 生机美 雅致美 萧瑟美
    色相直方图
    颜色简明度
    红色直方图
    绿色直方图
    蓝色直方图
    灰度直方图
    对比度
    亮度直方图
    暗通道
    图像模糊度
    邻域相似性
    直线段个数
    边界复杂度
    显著性图样
    下载: 导出CSV

    表  4  不同分类器下的美感自动分类结果

    Table  4.   Automatic classification results of aesthetics in different classifiers

    美感 Extra-Trees SVM 线性判别分析 随机森林 KNN 朴素贝叶斯 逻辑回归 多元感知机
    P R P R P R P R P R P R P R P R
    气势美 0.57 0.63 0.54 0.66 0.57 0.64 0.49 0.61 0.47 0.60 0.34 0.53 0.56 0.65 0.54 0.62
    生机美 0.53 0.74 0.58 0.64 0.57 0.67 0.50 0.66 0.55 0.66 0.58 0.18 0.57 0.71 0.57 0.64
    雅致美 0.52 0.41 0.51 0.44 0.55 0.48 0.48 0.38 0.51 0.44 0.46 0.44 0.49 0.45 0.44 0.45
    萧瑟美 0.20 0.04 0.43 0.23 0.41 0.14 0.20 0.07 0 0 0.18 0.47 0.42 0.14 0.39 0.14
    清幽美 0.49 0.21 0.34 0.21 0.34 0.25 0.51 0.21 0.38 0.29 0.16 0.09 0.34 0.16 0.36 0.27
    平均 0.46 0.41 0.48 0.44 0.49 0.44 0.44 0.39 0.38 0.40 0.34 0.34 0.48 0.42 0.46 0.42
    下载: 导出CSV

    表  5  美感分类偏误分析

    Table  5.   Error analysis of aesthetics classification

    下载: 导出CSV

    表  6  国画美感特征重要性系数

    Table  6.   Importance coefficient of aesthetic features in Chinese traditional painting

    特征 重要性系数
    颜色简明度 0.1756
    边界复杂度10 0.0945
    直线段个数 0.0896
    亮度直方图 5 0.0548
    红色直方图 10 0.0473
    红色直方图 7 0.0402
    亮度直方图 3 0.0357
    灰度直方图 12 0.0264
    绿色直方图 6 0.0259
    邻域相似性18 0.0244
    灰度直方图 5 0.0231
    邻域相似性24 0.0213
    亮度直方图 2 0.0207
    邻域相似性3 0.0205
    邻域相似性11 0.0200
    邻域相似性7 0.0200
    边界复杂度9 0.0195
    暗通道2 0.0194
    邻域相似性12 0.0191
    灰度直方图 1 0.0191
    灰度直方图 16 0.0186
    图像模糊度 0.0174
    显著性区域均值 0.0169
    灰度直方图 4 0.0164
    颜色直方图 4 0.0159
    邻域相似性4 0.0154
    蓝色直方图 10 0.0150
    对比度 0.0148
    邻域相似性17 0.0140
    邻域相似性16 0.0129
    邻域相似性10 0.0102
    颜色直方图 14 0.0092
    颜色直方图 9 0.0064
    下载: 导出CSV
  • [1] JOSHI D, DATTA R.Aesthetics and emotions in images[J]. IEEE Signal Processing Magazine, 2011, 28(5):94-115. doi: 10.1109/MSP.2011.941851
    [2] PERRONNIN F, MARCHESOTTI L, MURRAY N.AVA: A large-scale database for aesthetic visual analysis[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Piscataway, NJ: IEEE Press, 2012: 2408-2415.
    [3] LUO W, WANG X, TANG X.Content-based photo quality assessment[C]//IEEE International Conference on Computer Vision.Piscataway, NJ: IEEE Press, 2012: 2206-2213.
    [4] LI C, CHEN T.Aesthetic visual quality assessment of paintings[J]. IEEE Journal of Selected Topics in Signal Processing, 2009, 3(2):236-252. doi: 10.1109/JSTSP.2009.2015077
    [5] MOHAMMAD S M, TURNEY P D.WikiArt emotions: An annotated dataset of emotions evoked by art[C]//Proceedings of the 11th Edition of the Language Resources and Evaluation Conference, 2018.
    [6] MENSINK T, VAN GEMERT J C.The Rijksmuseum challenge: Museum-centered visual recognition[C]//Proceedings of International Conference on Multimedia Retrieval.New York: ACM, 2014: 451-454.
    [7] KE Y, TANG X, JING F, et al.The design of high-level features for photo quality assessment[C]//Proceedings of IEEE Comference on Computer Vision and Pattern Recognition.Piscataway, NJ: IEEE Press, 2006: 419-426.
    [8] LUO Y, TANG X.Photo and video quality evaluation: Focusing on the subject[C]//Proceedings of European Conference on Computer Vision.Berlin: Springer, 2008: 386-399.
    [9] WU Y, BAUCKHAGE C, THURAU C, et al.The good, the bad, and the ugly: Predicting aesthetic image labels[C]//Proceedings of International Conference on Pattern Recognition.Piscataway, NJ: IEEE Press, 2010: 1586-1589.
    [10] 陈俊杰, 杜雅娟, 李海芳.中国画的特征提取及分类[J].计算机工程与应用, 2008, 44(15):166-169. doi: 10.3778/j.issn.1002-8331.2008.15.052

    CHEN J J, DU Y J, LI H F.Feature extraction and classification of Chinese painting[J]. Computer Engineering and Applications, 2008, 44(15):166-169(in Chinese). doi: 10.3778/j.issn.1002-8331.2008.15.052
    [11] 刘晓巍, 普园媛, 黄亚群, 等.绘画视觉艺术风格的量化统计与分析[J].计算机科学与探索, 2013, 7(10):962-972. http://d.old.wanfangdata.com.cn/Periodical/jsjkxyts201310008

    LIU X W, PU Y Y, HUANG Y Q, et al.Quantitative statistics and analysis for painting visual art style[J]. Journal of Frontiers of Computer Science and Technology, 2013, 7(10):962-972(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jsjkxyts201310008
    [12] 王征, 孙美君, 韩亚洪, 等.监督式异构稀疏特征选择的国画分类和预测[J].计算机辅助设计与图形学学报, 2013, 25(12):1848-1855. http://d.old.wanfangdata.com.cn/Periodical/jsjfzsjytxxxb201312010

    WANG Z, SUN M J, HAN Y H, et al.Supervised heterogeneous sparse feature selection for Chinese paintings classification[J]. Journal of Computer-Aided Design & Computer Graphics, 2013, 25(12):1848-1855(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jsjfzsjytxxxb201312010
    [13] 盛家川, 李玉芝.国画的艺术目标分割及深度学习与分类[J].中国图象图形学报, 2018, 23(8):1193-1206. http://d.old.wanfangdata.com.cn/Periodical/zgtxtxxb-a201808009

    SHENG J C, LI Y Z.Learning artistic objects for improved classification of Chinese paintings[J]. Journal of Image and Graphics, 2018, 23(8):1193-1206(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/zgtxtxxb-a201808009
    [14] 高峰, 聂婕, 黄磊, 等.基于表现手法的国画分类方法研究[J].计算机学报, 2017, 40(12):2871-2882. doi: 10.11897/SP.J.1016.2017.02871

    GAO F, NIE J, HUANG L, et al.Traditional Chinese painting classification based on painting technique[J]. Chinese Journal of Computers, 2017, 40(12):2871-2882(in Chinese). doi: 10.11897/SP.J.1016.2017.02871
    [15] 李玉芝, 盛家川, 华斌.中国画分类的改进嵌入式学习算法[J].计算机辅助设计与图形学学报, 2018, 30(5):893-900. http://d.old.wanfangdata.com.cn/Periodical/jsjfzsjytxxxb201805017

    LI Y Z, SHENG J C, HUA B.Improved embedded learning for classification of Chinese paintings[J]. Journal of Computer-Aided Design & Computer Graphics, 2018, 30(5):893-900(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jsjfzsjytxxxb201805017
    [16] 张佳婧, 彭韧, 王健, 等.水墨画计算审美评估[J].软件学报, 2016, 27(增刊2):220-233.

    ZHANG J J, PENG R, WANG J, et al.Computational aesthetic evaluation of Chinese wash paintings[J]. Journal of Software, 2016, 27(Suppl.2):220-233(in Chinese).
    [17] 陈丽君.美感与积极情绪的关系及对变化觉察的影响[D].重庆: 西南大学, 2010.

    CHEN L J.The relationship between aesthetic experience and positive emotion and the impact on change detection[D]. Chongqing: Southwest University, 2010(in Chinese).
    [18] ISRAELI N.Affective reactions to painting reproductions:A study in the psychology of esthetics[J]. Journal of Applied Psychology, 1928, 12(1):125-139.
    [19] HAGTVEDT H, HAGTVEDT R, PATRICK V M.The perception and evaluation of visual art[J]. Empirical Studies of the Arts, 2008, 26(2):197-218. doi: 10.2190/EM.26.2.d
    [20] STAMATOPOULOU D.Integrating the philosophy and psychology of aesthetic experience:Development of the aesthetic experience scale[J]. Psychological Reports, 2004, 95(2):673-695.
    [21] SILVIA P J, FAYN K, NUSBAUM E C, et al.Openness to experience and awe in response to nature and music:Personality and profound aesthetic experiences[J]. Psychology of Aesthetics Creativity & the Arts, 2015, 9(4):376-384.
    [22] MARKOVIC' S.Aesthetic experience and the emotional content of paintings[J]. Psihologija, 2010, 43(1):47-64. doi: 10.2298/PSI1001047M
    [23] ROWOLD J.Instrument development for esthetic perception assessment[J]. Journal of Media Psychology Theories Methods & Applications, 2008, 20(1):35-40.
    [24] HAGER M, HAGEMANN D, DANNER D, et al.Assessing aesthetic appreciation of visual artworks-The construction of the art reception survey (ARS)[J]. Psychology of Aesthetics Creativity & the Arts, 2012, 9(4):320-333.
    [25] KARINA V.Die emotionale Wirkung moderner Kunst[D]. Deutschland: Universität Wien, 2010.
    [26] 丁月华.概念隐喻理解中的美感体验对科学概念理解的作用研究[D].重庆: 西南大学, 2008.

    DING Y H.A research on the role of aesthetic experience of concept metaphor understanding to the scientific concept understanding[D]. Chongqing: Southwest University, 2008(in Chinese).
    [27] HEVNER K.Experimental studies of the elements of expression in music[J]. American Journal of Psychology, 1936, 48(2):246-268. doi: 10.2307-1415746/
    [28] 孟子厚.音质主观评价的实验心理学方法[M].北京:国防工业出版社, 2008:84-89.

    MENG Z H.Experimental psychological method of subjective evaluation of sound quality[M]. Beijing:National Defense Industry Press, 2008:84-89(in Chinese).
    [29] CATTELL R B.The scientific use of factor analysis in behavioral and life sciences[M]. Berlin:Springer, 1978.
    [30] 湛颖, 高妍, 谢凌云.中国国画情感-美感数据库[J/OL].中国图像图形学报(2019-06-19)[2019-07-03].http://www.cjig.cn/jig/ch/reader/view_abstract.aspx?flag=2&file_no=201903210000001&journal_id=jig.

    ZHAN Y, GAO Y, XIE L Y.A database for emotion and aesthetic analysis on Chinese traditional paintings[J/OL]. Journal of Image and Graphics(2019-06-19)[2019-07-03]. http://www.cjig.cn/jig/ch/reader/view_abstract.aspx?flag=2&file_no=201903210000001&journal_id=jig(in Chinese).
    [31] HE K, SUN J, TANG X, et al.Single image haze removal using dark channel prior[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Piscataway, NJ: IEEE Press, 2009: 1956-1963.
    [32] CANNY J F.A computational approach to edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8(6):679-698. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_3d39d0b11988c5f90bf44b10d764f020
    [33] DONG Z, TIAN X.Multi-level photo quality assessment with multi-view features[J]. Neurocomputing, 2015, 168(30):308-319. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=83cda8c0f4734e5c195f6102bb379c64
    [34] KOCH C, ULLMAN S.Shifts in selective visual attention:Towards the underlying neural circuitry[J]. Human Neurobiology, 1987, 4(2):115-141.
    [35] GUYON I, WESTON J, BARNHILL S, et al.Gene selection for cancer classification using support vector machines[J]. Machine Learning, 2002, 46(1):389-422. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_2216417
    [36] 周志华.机器学习[M].北京:清华大学出版社, 2016:26-30.

    ZHOU Z H.Machine learning[M]. Beijing:Tsinghua University Press, 2016:26-30(in Chinese).
    [37] GEURTS P, ERNST D, WEHENKEL L, et al.Extremely randomized trees[J]. Machine Learning, 2006, 63(1):3-42. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0227516002/
  • 加载中
图(7) / 表(6)
计量
  • 文章访问数:  1216
  • HTML全文浏览量:  239
  • PDF下载量:  416
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-09
  • 录用日期:  2019-08-19
  • 网络出版日期:  2019-12-20

目录

    /

    返回文章
    返回
    常见问答