留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

结合轮廓及骨架序列编码的二维形状识别

卢勇强 栗志扬 陈祎楠 刘朝斌 黄一鸣

卢勇强, 栗志扬, 陈祎楠, 等 . 结合轮廓及骨架序列编码的二维形状识别[J]. 北京航空航天大学学报, 2019, 45(12): 2523-2532. doi: 10.13700/j.bh.1001-5965.2019.0376
引用本文: 卢勇强, 栗志扬, 陈祎楠, 等 . 结合轮廓及骨架序列编码的二维形状识别[J]. 北京航空航天大学学报, 2019, 45(12): 2523-2532. doi: 10.13700/j.bh.1001-5965.2019.0376
LU Yongqiang, LI Zhiyang, CHEN Yinan, et al. Two-dimensional shape recognition based on contour and skeleton sequence coding[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(12): 2523-2532. doi: 10.13700/j.bh.1001-5965.2019.0376(in Chinese)
Citation: LU Yongqiang, LI Zhiyang, CHEN Yinan, et al. Two-dimensional shape recognition based on contour and skeleton sequence coding[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(12): 2523-2532. doi: 10.13700/j.bh.1001-5965.2019.0376(in Chinese)

结合轮廓及骨架序列编码的二维形状识别

doi: 10.13700/j.bh.1001-5965.2019.0376
基金项目: 

国家自然科学基金 61300187

国家自然科学基金 61672379

辽宁省自然科学基金 2019-MS-028

详细信息
    作者简介:

    卢勇强  男, 硕士研究生。主要研究方向:计算机视觉、图像处理

    栗志扬  男, 博士, 副教授, 硕士生导师。主要研究方向:计算机视觉、云计算与大数据

    陈祎楠  男, 硕士研究生。主要研究方向:计算机视觉

    刘朝斌  男, 博士, 教授, 博士生导师。主要研究方向:云计算与云安全

    黄一鸣  男, 硕士研究生。主要研究方向:图像处理、组合优化

    通讯作者:

    栗志扬, E-mail: lizy0205@gmail.com

  • 中图分类号: TP391

Two-dimensional shape recognition based on contour and skeleton sequence coding

Funds: 

National Natural Science Foundation of China 61300187

National Natural Science Foundation of China 61672379

Liaoning Provincial Natural Science Foundation of China 2019-MS-028

More Information
  • 摘要:

    二维形状识别是物体识别中的一个基本问题,被广泛地应用于商标检索、指纹识别、物体定位、图像检索等多个领域。其中,基于生物信息学的二维形状识别是近期一个新的研究方向,基本思想是把二维形状的轮廓转化为生物信息序列,借助标准的生物信息序列分析工具来进行二维形状的匹配和识别。不过,利用轮廓进行信息序列编码存在编码冗余和编码准确性不高的问题,本文提出了一种新型的结合形状轮廓和骨架的序列编码方法。该方法利用骨架表示形状的细长分支,减少编码的冗余;并分别对轮廓和骨架进行不同类型的编码,具备编码简洁、后续匹配准确性高等优点。最后,本文在三个公开数据集上进行大量的形状识别实验,并与多种通用形状识别方法进行了比较。实验表明,本文方法在多个实验中均取得了较高的识别准确率,相比基本的形状特征描述方法,准确率提高了近5%。

     

  • 图 1  二维形状匹配流程图

    Figure 1.  Flowchart of 2D shape matching

    图 2  形状的轮廓与骨架

    Figure 2.  Contour and skeleton of a shape

    图 3  形状细支处的轮廓与骨架

    Figure 3.  Contour and skeleton of branch of a shape

    图 4  轮廓与骨架的联合表示及默认的编码方向

    Figure 4.  A combined representation of contour and skeleton and default encoding direction

    图 5  编码构造规则

    Figure 5.  Encoding construction rule

    图 6  MPEG-7数据集

    Figure 6.  MPEG-7 dataset

    图 7  MPGE-7数据集可视化查询

    Figure 7.  Visual query of MPEG-7 dataset

    图 8  ETH-80数据集

    Figure 8.  ETH-80 dataset

    图 9  Swedish leaf数据集

    Figure 9.  Swedish leaf dataset

    图 10  MPEG-7数据集上不同编码策略分类准确率的比较

    Figure 10.  Comparison of classification accuracy rate on MPEG-7 dataset by different encoding strategies

    图 11  ETH-80数据集上不同编码策略分类准确率的比较

    Figure 11.  Comparison of classification accuracy rate on ETH-80 dataset by different encoding strategies

    表  1  MPEG-7数据集上牛眼比较法分类准确率对比

    Table  1.   Comparison of classification accuracy rate of bullseye method on MPEG-7 dataset

    方法 准确率/%
    IDSC+LP[17] 91.61
    IDSC+SSP[18] 93.35
    Layered graph[19] 88.75
    Aspect shape context[3] 88.3
    Shape tree[1] 87.7
    MDS+SC+DP[2] 84.35
    HPM[20] 86.35
    Symbolic representation[21] 85.92
    IDSC+DP[2] 85.4
    Bioinformatics classification[5] 77.24
    本文方法 88.64
    下载: 导出CSV

    表  2  MPEG-7数据集上的分类准确率对比

    Table  2.   Comparison of classification accuracy rate on MPEG-7 dataset

    方法 准确率/%
    留半法 留一法
    Skeleton paths[22] 86.7
    Class segment set[23] 90.9 97.93
    Contour segments[22] 91.1
    ICS[22] 96.5
    Robust symbolic[21] 98.57
    Kernel-edit distance[21] 98.93
    BCF + SVM[24] 97.16 98.93
    Bioinformatics classification[5] 95.85 98.1
    本文方法 96.07 98.07
    下载: 导出CSV

    表  3  ETH-80数据集上的分类准确率对比

    Table  3.   Comparison of classification accuracy rate on ETH-80 dataset

    方法 准确率/%
    Color histogram[25] 64.86
    PCA gray[25] 82.99
    PCA mask[25] 83.41
    SC+DP[4] 86.40
    IDSC+DP[4] 88.11
    IDSC+Morphological Strategy[26] 88.04
    Robust symbolic[21] 90.28
    Kernel-edit[27] 91.33
    BCF[24] 91.49
    Bioinformatics classification[5] 91.33
    本文方法 91.37
    下载: 导出CSV

    表  4  Swedish leaf数据集上的分类准确率对比

    Table  4.   Comparison of classification accuracy rate on Swedish leaf dataset

    方法 准确率/%
    Fourier[2] 89.60
    SC+DP[2] 88.12
    IDSC+DP[2] 94.13
    IDSC+Morphological Strategy[26] 94.80
    Robust symbolic[21] 95.47
    Shape-tree[20] 96.28
    BCF[24] 96.56
    CNN[28] 99.11
    本文方法 94.67
    下载: 导出CSV
  • [1] BELONGIE S, MALIK J, PUZICHA J.Shape matching and object recognition using shape contexts[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(4):509-522. doi: 10.1109/34.993558
    [2] LING H, JACOBS W D.Shape classification using the inner-distance[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(2):286-299. doi: 10.1109/TPAMI.2007.41
    [3] LING H, YANG X, LATECKI J L.Balancing deformability and discriminability for shape matching[C]//11th European Conference on Computer Vision.Berlin: Springer-Verlag, 2010, 6313(3): 411-424.
    [4] KRIZHEVSKY A, SUTSKEVER I, HINTON G E.ImageNet classification with deep convolutional neural networks[C]//NIPS'12 Proceedings of the 25th International Conference on Neural Information Processing Systems, 2012: 1097-1105.
    [5] BICEGO M, LOVATO P.A bioinformatics approach to 2D shape classification[J]. Computer Vision and Image Understanding, 2016, 145:59-69. doi: 10.1016/j.cviu.2015.11.011
    [6] XU D, ALAMEDA-PINEDA X, SONG J, et al.Cross-paced representation learning with partial curricula for sketch-based image retrieval[J]. IEEE Transactions on Image Processing, 2018, 27(9):4410-4421. doi: 10.1109/TIP.2018.2837381
    [7] BISWAS S, AGGARWAL G, CHELLAPPA R.Efficient indexing for articulation invariant shape matching and retrieval[C]//2007 IEEE Conference on Computer Vision and Pattern Recognition.Piscataway, NJ: IEEE Press, 2007: 1-8.
    [8] BLUM H.A transformation for extracting new descriptors of shape[M]//WATHEN DUNN W.Models for the perception of speech and visual form model.Cavnbridge: MIT Press, 1967: 362-380.
    [9] 陈展展, 汤进, 罗斌, 等.基于最优子序列双射的骨架树匹配[J].计算机工程与应用, 2011, 41(7):162-165. doi: 10.3778/j.issn.1002-8331.2011.07.047

    CHEN Z Z, TANG J, LUO B, et al.Skeleton tree matching based on optimal subsequence bijection[J]. Computer Engineering and Applications, 2011, 41(7):162-165(in Chinese). doi: 10.3778/j.issn.1002-8331.2011.07.047
    [10] BAI X, LATECKI J L.Path similarity skeleton graph matching[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(7):1282-1292. doi: 10.1109/TPAMI.2007.70769
    [11] NEEDLEMAN S, WUNSCH C.A general method applicable to the search for similarities in the amino acid sequence of two proteins[J]. Journal of Molecular Biology, 1970, 48(31):443-453. doi: 10.1016-0022-2836(70)90057-4/
    [12] SMITH T, WATERMAN S M M.Identification of common molecular subsequences[J]. Journal of Molecular Biology, 1981, 147(1):195-197. doi: 10.1016/0022-2836(81)90087-5
    [13] ALTSCHUL S, GISH W, MILLER W, et al.Basic local alignment search tool[J]. Journal of Molecular Biology, 1990, 2145(3):403-410. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0231404456/
    [14] LARKIN M, BLACKSHIELDS G, BROWN N, et al.Clustal w and clustal x version 2.0[J]. Bioinformatics, 2007, 23(21):2947-2948. doi: 10.1093/bioinformatics/btm404
    [15] MARIE R, LABBANI-IGBIDA O, MOUADDIB M E.The delta medial axis:A fast and robust algorithm for filtered skeleton extraction[J]. Pattern Recognition, 2016, 56:26-39. doi: 10.1016/j.patcog.2016.02.011
    [16] GOS'CIEWSKA K, FREJLICHOWSKI D.Silhouette-based action recognition using simple shape descriptors[C]//Lecture Notes in Computer Science.Berlin: Springer-Verlag, 2018, 11114: 413-424.
    [17] BAI X, YANG X, LATECKI J L, et al.Learning context-sensitive shape similarity by graph transduction[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 32(5):861-874. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b7ad1715655a7dd6a19478938738e5fb
    [18] WANG J, LI Y, BAI X, et al.Learning context-sensitive similarity by shortest path propagation[J]. Pattern Recognition, 2011, 44(10):2367-2374. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2bc10153182479494c7603fef9d53503
    [19] LIN L, ZENG K, LIU X, et al.Layered graph matching by composite cluster sampling with collaborative and competitive interactions[C]//2009 IEEE Conference on Computer Vision and Pattern Recognition.Piscataway, NJ: IEEE Press, 2009: 1351-1358.
    [20] MCNEILL G, VIJAYAKUMAR S.Hierarchical procrustes matching for shape retrieval[C]//2006 IEEE Conference on Computer Vision and Pattern Recognition.Piscataway, NJ: IEEE Press, 2006: 885-894.
    [21] DALIRI R M, TORRE V.Robust symbolic representation for shape recognition and retrieval[J]. Pattern Recognition, 2008, 41(5):1782-1798. doi: 10.1016/j.patcog.2007.10.020
    [22] BAI X, LIU W, TU Z.Integrating contour and skeleton for shape classification[C]//2009 IEEE 12th International Conference on Computer Vision Workshops.Piscataway, NJ: IEEE Press, 2009: 360-367.
    [23] SUN B K, SUPER J B.Classification of contour shapes using class segment sets[C]//2005 IEEE Conference on Computer Vision and Pattern Recognition.Piscataway, NJ: IEEE Press, 2005: 727-733.
    [24] WANG X, FENG B, BAI X, et al.Bag of contour fragments for robust shape classification[J]. Pattern Recognition, 2014, 47(5):2116-2125. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0c6be3652bf5467b4efb55bfe21bb755
    [25] LEIBE B, SCHIELE B.Analyzing appearance and contour based methods for object categorization[C]//2003 IEEE Conference on Computer Vision and Pattern Recognition.Piscataway, NJ: IEEE Press, 2003: 409-415.
    [26] HU X R, JIA W, ZHAO Y, et al.Perceptually motivated morphological strategies for shape retrieval[J]. Pattern Recognition, 2012, 45(9):3222-3230. doi: 10.1016/j.patcog.2012.02.020
    [27] DALIRI R M, TORRE V.Shape recognition based on Kernel-edit distance[J]. Computer Vision and Image Understanding, 2010, 114(10):1097-1103. doi: 10.1016/j.cviu.2010.07.002
    [28] ATABAY A H.A convolutional neural network with a new architecture applied on leaf classification[J]. ⅡOAB Journal, 2016, 7(5):326-331.
    [29] GAO L, SONG J, NIE F, et al.Optimal graph learning with partial tags and multiple features for image and video annotation[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition.Piscataway, NJ: IEEE Press, 2015: 4371-4379.
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  818
  • HTML全文浏览量:  112
  • PDF下载量:  324
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-09
  • 录用日期:  2019-08-12
  • 网络出版日期:  2019-12-20

目录

    /

    返回文章
    返回
    常见问答